EPSAT – NIGER SUIVI A LONG TERME

CAMPAGNE 2002

SOMMAIRE

INTRODUCTION	5
I. CARACTERISTIQUE DE LA SAISON DES PLUIES 2002 A L'ECHELLE DU	
NIGER	
II. LE RESEAU DE PLUVIOGRAPHES	
A. Les stations du réseau et leur installation	
2. Installations	
B. Qualité de l'acquisition	
1. Pannes	
Comparaison valeurs seau et valeurs augets	
III. ANALYSE SPATIALE DE LA SAISON	14
A. Analyse des cumuls saisonniers	
1. Description des cumuls saisonniers : répartition spatiale des hauteurs tombées	
2. Ajustement d'une loi normale sur les cumuls saisonniers	
3. Structure spatiale des cumuls : caractéristiques du variogramme des cumuls	
saisonniers	. 15
4. Variogramme des résidus à la dérive climatologique	. 18
B. Analyse spatiale des évènements	. 19
1. Introduction : caractéristiques des évènements majeurs	
a) Comparaison du nombre d'évènements majeurs sur les dernières années et des	
cumuls qui leur sont dus.	19
b) Histogramme des cumuls provenant des évènements majeurs de la saison 2002	
2. Calcul du variogramme climatologique et interprétation	
C. Analyse des gradients locaux	
 Gradients observés au niveau saisonnier. Gradients observés au niveau évènementiel. 	
3. Exemple : le cas de la station de Niamey	
IV. ANALYSE TEMPORELLE DE LA SAISON	
A. Analyse temporelle des cumuls pluviométriques	
1. Introduction : déroulement de la saison 2002	
Cumuls mensuels sur le degré carré	
B. Analyse temporelle des évènements pluvieux	
1. Liste des évènements majeurs : comparaisons inter-stations et interannuelles	
a) Comparaison des hyétogrammes de trois stations	
b) Comparaison des hyétogrammes moyens de trois années	. 33
2. Caractéristiques temporelles des évènements majeurs	. 34
a) Histogramme de la durée des évènements majeurs	
b) Étude d'un évènement à petits pas de temps	. 35
C. Début de saison des pluies : comparaison critère climatique, hydrologique et	
agronomique	
1. Définitions et calcul des dates de démarrages selon différents critères	
2. Résultats	
a) Variabilité inter annuelle	
b) Variabilité spatiale : comparaison avec les années précédentes	
CONCLUDION	42

LISTE DES TABLEAUX

Tableau 2.1: Liste des 38 postes du réseau en 2002, classés par ordre alphabétique	8
Tableau 2.2: Liste des 38 sites du réseau en 2002, classés par numéro.	9
Tableau 2.3: Planning d'installation des stations et cumuls mesurés sur la période de	
fonctionnement et sur la période 15 avril - 15 octobre, pour les stations du degré carré	(a)
et celles du réseau synoptique (b).	11
Tableau 2.4 : Période de fonctionnement en 2002	12
Tableau 2.5 : Comparaison des valeurs totales de la saison (mm), seau et augets	13
Tableau 3.1: Liste des 42 événements majeurs enregistrés en 2002 à partir de 33 stations	21
Tableau 3.2: Comparaison pour les années 1991 à 2002 de l'importance des évènements	
majeurs	23

LISTE DES FIGURES

Figure 2.1 : Dispositif de mesures durant la saison 2002 sur le degré carré	10
Figure 3.1 : Isohyètes (mm) de la saison des pluies 2002 (15 avril-15octobre) sur le degré	
carré de Niamey (33 stations)	14
Figure 3.2: Ajustement d'une loi normale sur les cumuls de la période 15 avril – 15 octobre	re 15
Figure 3.3: Fonction de structure des cumuls (15 avril - 15 octobre), et essai d'ajustement p	
un variogramme gaussien	
Figure 3.4 : Isohyètes du cumul saisonnier d'après le modèle gaussien, sur le degré carré	
Figure 3.5: Cartes de l'écart type suivant le modèle gaussien, sur le degré carré	
Figure 3.6: Moyenne des cumuls calculée à partir des valeurs mesurées sur des bandes	
latitudinales 20 kilomètres.	18
Figure 3.7 : Variogramme des résidus	
Figure 3.8: Directions des systèmes convectifs majeurs (modélisés par les vecteurs « prem	
station touchée – dernière station touchée »).	
Figure 3.9: Histogramme des cumuls moyens en mm des épisodes spatiaux majeurs de la	
saison 2002	24
Figure 3.10 : Variogramme climatologique	
Figure 3.11 : Chronologie des cumuls journaliers à Banizoumbou et Kalassi	
Figure 3.12 : Comparaison des évènements pluvieux pour les deux stations proches de	
Gardama Kouara et Massi Koubou : hauteurs cumulées (a) et hauteurs des évènemen	ts
majeurs (b).	
Figure 3.13: Cumul de l'évènement du 14 juin 2002.	
Figure 3.14: Comparaison des cumuls mensuels 2002 (mm) des 3 stations de Niamey ave	
les cumuls moyens mensuels sur la période 1950-89.	
Figure 4.1 : Evolution cumulée de la pluviométrie en 2002 (basée sur les cumuls mensuels	
moyens), comparée aux années précédentes	
Figure 4.2 : Isohyètes mensuels (mm) de la saison des pluies 2002 obtenus par krigeage su	
degré carré de Niamey	
Figure 4.3: Chronologies des pluies journalières (mm) enregistrées sur 3 stations	
Figure 4.4 : Chronologie des cumuls calculés à partir des pluies journalières, sur 3 stations	
Figure 4.5: Chronologie du cumul moyen des évènements majeurs (mm) enregistrés sur le	
degré carré en 1998, 2001 et 2002.	33
Figure 4.6 : Evolution du cumul moyen des évènements majeurs (mm) enregistrés sur le d	egré
carré en 1998, 2001 et 2002, normalisé par le cumul total	34
Figure 4.7: Histogramme de la durée (en heures) des épisodes spatiaux majeurs de la saisc	n
2002	34
Figure 4.8 : Suivi spatial de l'évènement du 17/09/2002. Pas de temps 5 minutes	37
Figure 4.9 : Transect de suivi de l'évènement du 17/09/2002	
Figure 4.10 : Evolution de l'évènement du 17/09/2002, sur les 5 stations du transect	
Figure 4.11 : Comparaison des dates de démarrage et de fin de la saison des pluies suivant	
critère agronomique et le critère climatique	
Figure 4.12 : Comparaison, au cours des 10 dernières années de l'expérience Epsat, des	
cumuls saisonniers, suivant les 3 critères de définition de la saison pluvieuse	40
Figure 4.13 : Dates de démarrage de la saison des pluies sur l'observatoire EPSAT-Niger	
2 années (2001 et 2002), à gauche suivant le critère hydrologique (seuil 2.5 mm), à d	
suivant le critère agronomique.	

Introduction

La saison 2002, dont la moyenne arithmétique des cumuls saisonniers sur l'année complète est de 523,6mm et dont l'écart-type est de 122,6 mm, se situe dans la moyenne des saisons de la période sèche 1968-89 (environ 505mm). Cependant elle reste inférieure à la moyenne obtenue sur la période 1950-89(environ 560mm).

Comme chaque année, la saison pluvieuse a montré une forte variabilité spatiale et temporelle qui va être étudiée en détails dans ce rapport.

La saison 2002 est tout d'abord étudiée succinctement à l'échelle du Niger. Dans la suite du rapport, seule la zone du degré carré de Niamey (où se trouve le réseau de mesure EPSAT-Niger) est étudiée. Pour commencer le réseau de mesure opérationnel en 2002 et la qualité de l'acquisition sont présentés. Ensuite vient une analyse spatiale de la saison, comprenant l'analyse spatiale des cumuls (permettant d'étudier la variabilité spatiale des cumuls et la dérive climatologique), l'analyse spatiale des évènements (renseignant entre autres sur la direction de déplacements des évènements pluvieux) et l'étude des gradients locaux. Enfin, une analyse temporelle de la saison est faite. L'analyse temporelle des cumuls permet entre autres de caractériser le déroulement de la saison et l'évolution mensuelle des cumuls ; l'analyse temporelle des évènements majeurs renseigne sur l'importance de la contribution de ces évènements au cumul total, sur la durée des évènements et conduit à une étude d'un évènement avec petit pas de temps. Une dernière partie de l'analyse temporelle consiste à étudier la durée de la saison 2002 suivant 3 critères de natures différentes : climatique, hydrologique et agronomique.

l. Caractéristique de la saison des pluies 2002 à l'échelle du Niger

II. Le réseau de pluviographes

A. Les stations du réseau et leur installation

1. Les stations

L'expérimentation EPSAT-Niger est dans une phase de suivi à long terme depuis la saison 1994. Ceci a engendré une diminution progressive du nombre de pluviographes au fur et à mesure que les expérimentations s'achevaient. Comme pour les années antérieures, la couverture pluviographique s'étend sur environ 16 000 km², limitée en longitude par les méridiens 1°40 E et 3° E et en latitude par les parallèles 13 et 14 N.

Cette année, le réseau comporte 33 pluviographes auxquels il faut ajouter, dans le cadre de la collaboration avec la Direction de la Météorologie Nationale, ceux de Tillabéri et Birnin n'Konni, installés en 1999 ainsi que ceux de Tahoua, Maradi et Zinder, installés en 2001 (cf. Tableau 2.1: Liste des 38 postes du réseau en 2002, classés par ordre alphabétique et Tableau 2.2: Liste des 38 sites du réseau en 2002, classés par numéro).

Les pluviographes sont à augets basculeurs, munis d'un cône de 400 cm² (*Lebel et al., 1991*). Ce réseau a une maille de base de 25 km ce qui, au regard des travaux qui ont déjà été effectués, semble suffisant pour obtenir des valeurs moyennes de pluie sur les surfaces de l'ordre du degré carré (**Figure 2.1 : Dispositif de mesures durant la saison 2002 sur le degré carré**).

Stations	Codes	Latitude	Longitude	Altitude	Х	Υ	N° EPSAT
	identification	deg min sec	deg min sec	;			
ALKAMA	1321204300	13°49'19"	02°57'28"	205	103,32	91,39	43
BANIZOUMBOU	1321201100	13°31'58"	02°39'37"	202	71,34	59,25	11
BERIKOIRA	1321202100	13°38'59"	02°28'37"	215	51,49	72,26	21
BERKIAWEL	1321202800	13°32'30"	02°18'31"		33,33	60,23	28
BIRNI N'KONNI	1321232500	13°48'00"	05°15'00"				325
BOLOLADIE	1321208400	13°13'29"	01°52'12"		-14,06	24,98	84
BOUBON GOLF	1321208500	13°36'24"	01°56'09"		-6,93	67,46	85
DAREY	1321201800	13°39'15"	02°42'51"		77,11	73,00	18
DEBEREGATI	1321202500	13°03'40"	02°06'52"	230	12,38	6,78	25
FANDOU BERI	1321200900	13°31'55"	02°33'31"	232	60,36	59,14	9
GAMONZON	1321203400	13°26'56"	02°02'00"		3,6	49,91	34
GARDAMA KOUARA	1321205000	13°50'04"	02°16'33"	212	29,78	92,78	50
GOROU GOUSSA	1321208000	13°50'18"	02°02'08"		3,83	93,22	80
GUILAHEL	1321204900	13°17'41"	02°08'45"	274	15,77	32,79	49
HARIKANASSOU	1321204100	13°15'28"	02°50'28"	208	90,99	28,65	41
IH JACHERE	1321210500	13°14'26"	02°13'49"		26,02	26,75	105
KAFINA	1321241300	13°44'01"	02°43'21"		77,89	81,57	413
KALASSI	1321200500	13°31'36"	02°34'40"		62,42	58,56	5
KALIGOROU	1321206100	13°36'58"	03°00'52"		36,27	4,63	61
KARE	1321202900	13°02'30"	02°20'06"		36,27	4,63	29
KOKORBE FANDOU	1321207300	13°50'49"	02°37'13"		66,91	94,18	73
KOLLO	1321205400	13°22'27"	02°14'40"	198	26,42	41,61	54
KOURE KOBADE	1321202600	13°00'17"	03°03'00"	220	113,71	0,52	26
KOURE SUD	1321205100	13°12'14"	02°36'52"		66,48	22,67	51
KOYRIA	1321208200	13°46'00"	01°42'00"		-32,38	85,25	82
MARADI	1321241600	13°29'59"	07°07'08"				416
MASSIKOUBOU	1321207800	13°49'37"	02°25'00"	250	44,95	91,94	78
NIAMEY AEROPORT	1321209400	13°28'47"	02°10'23"		18,71	53,36	94
NIAMEY IRI	1321208300	13°30'00"	02°05'21"		9,63	55,60	83
NIAMEY ORSTOM	1321207000	13°31'52"	02°05'48"	220	10,44	59,07	70
SANDIDEY	1321205700	13°13'11"	03°03'32"		6,37	24,43	57
TAHOUA	1321226900	14°52'47"	05°16'13"				269
TANABERI	1321203200	13°02'30"	02°32'53"		59,34	4,63	32
TILLABERI	1321241400	14°12'16"	01°27'16"				414
TORODI	1321208600	13°07'00"	01°47'06"		-23,27	12,97	86
WANKAMA	1321211600	13°39'00"	02°38'55"		70,02	72,28	116
YILLADE	1321203500	13°01'09"	02°47'22"	237	85,84	2,13	35
ZINDER	1321231500	13°46'31"	08°59'03"				315

X, Y coordonnées dans le degré carré (origine du repère 2 E, 13 N) :

Tableau 2.1: Liste des 38 postes du réseau en 2002, classés par ordre alphabétique.

Y = (Latd.-13)*111,2 en km

X=(Longd.-2)*(108,3-0,5*Y/111,2) en km Latd. et Longd. en degré décimaux

N° EPSAT	Stations	Codes	Latitude	Longitude	Altitude	Х	Υ
		identification	deg min sec	deg min sec			
5	KALASSI *	1321200500	13°31'36"	02°34'40"		62,42	58,56
9	FANDOU BERI	1321200900	13°31'55"	02°33'31"	232	60,36	59,14
11	BANIZOUMBOU	1321201100	13°31'58"	02°39'37"	202	71,34	59,25
18	DAREY	1321201800	13°39'15"	02°42'51"		77,11	73,00
21	BERIKOIRA	1321202100	13°38'59"	02°28'37"	215	51,49	72,26
25	DEBEREGATI	1321202500	13°03'30"	02°07'20"		12,38	6,50
26	KOURE KOBADE	1321202600	13°00'17"	03°03'00"	220	113,71	0,52
28	BERKIAWEL	1321202800	13°32'30"	02°18'31"		33,33	60,23
29	KARE	1321202900	13°02'30"	02°20'06"		36,27	4,63
32	TANABERI	1321203200	13°02'30"	02°32'53"		59,34	4,63
34	GAMONZON	1321203400	13°26'56"	02°02'00"		111,49	51,28
35	YILLADE	1321203500	13°01'09"	02°47'22"		85,48	2,13
41	HARIKANASSOU	1321204100	13°15'28"	02°50'28"	208	90,99	28,65
43	ALKAMA	1321204300	13°49'19"	02°57'28"	205	103,32	91,39
49	GUILAHEL	1321204900	13°17'41"	02°08'45"	274	15,77	32,79
50	GARDAMA KOUARA	1321205000	13°50'04"	02°16'33"	212	29,78	92,78
51	KOURE SUD	1321205100	13°12'14"	02°36'52"		66,48	22,67
54	KOLLO	1321205400	13°22'27"	02°14'40"	198	26,42	41,61
57	SANDIDEY	1321205700	13°13'11"	03°03'32"		114,01	25,06
61	KALIGOROU	1321206100	13°36'58"	03°00'52"		109,40	68,09
70	NIAMEY ORSTOM	1321207000	13°31'52"	02°05'48"	220	10,44	59,07
73	KOKORBE FANDOU	1321207300	13°50'49"	02°37'13"		66,91	94,18
78	MASSIKOUBOU	1321207800	13°49'37"	02°25'00"	250	44,95	91,94
80	GOROU GOUSSA	1321208000	13°50'18"	02°02'08"		3,83	93,22
82	KOYRIA	1321208200	13°46'00"	01°42'00"		-32,38	85,25
83	NIAMEY IRI	1321208300	13°30'00"	02°05'21"		9,63	55,60
84	BOLOLADIE	1321208400	13°13'29"	01°52'12"		-14,06	24,98
85	BOUBON GOLF	1321208500	13°36'24"	01°56'09"		-6,93	67,46
86	TORODI	1321208600	13°07'00"	01°47'06"		-23,27	12,97
94	NIAMEY AEROPORT	1321209400	13°28'47"	02°10'23"		18,71	53,36
105	IH JACHERE	1321210500	13°14'26"	02°13'49"		26,02	26,75
116	WANKAMA	1321211600	13°39'00"	02°38'55"		70,02	72,28
269	TAHOUA	1321226900	14°52'47"	05°16'13"			
315	ZINDER	1321231500	13°46'31"	08°59'03"			
325	BIRNI N'KONNI	1321232500	13°48'00"	05°15'00"			
413	KAFINA	1321241300	13°44'01"	02°43'21"		77,98	81,57
414	TILLABERI	1321241400	14°12'16"	01°27'16"			
416	MARADI	1321241600	13°29'59"	07°07'08"			

Tableau 2.2: Liste des 38 sites du réseau en 2002, classés par numéro.

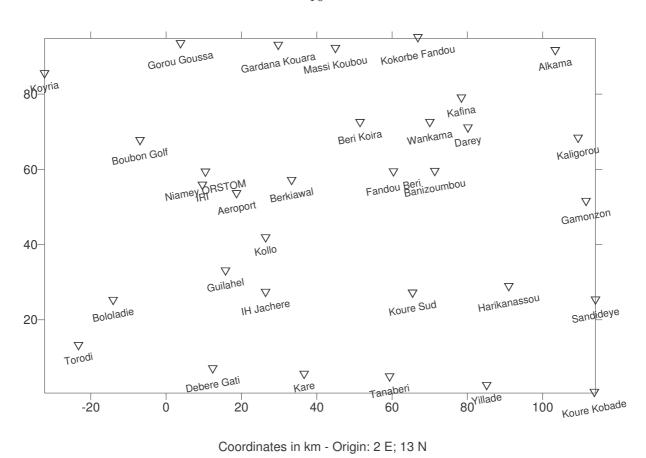


Figure 2.1 : Dispositif de mesures durant la saison 2002 sur le degré carré

2. Installations

Quatre postes ont fonctionné en permanence entre la fin de la saison des pluies 2001 et le début de la saison des pluies 2002 (Banizoumbou, Niamey aéroport, Niamey IRI et Niamey Orstom). Les autres ont été démontés, nettoyés, testés et entreposés durant la saison sèche. Le planning d'installation des stations a commencé le 13 mars (Niamey IRI et aéroport, n°83 et 94) et s'est terminé le 2 avril (Zinder, n°315) (**Tableau 2.3: Planning d'installation des stations et cumuls mesurés sur la période de fonctionnement et sur la période 15 avril - 15 octobre**)

Toutes les stations implantées près des villages ont été surveillées en permanence par un gardien, réduisant ainsi les risques de déprédations et de vols. Pour obtenir un suivi des pluies aussi précis que possible, compte tenu du personnel disponible et du budget, chaque station a reçu une visite de contrôle au moins tous les 31 jours durant toute la saison des pluies. Les cartouches ont été changées environ tous les 31 jours également, pour permettre de suivre l'évolution de la saison des pluies en temps le moins décalé possible.

En fin de saison, le démontage des stations s'est effectué entre le 29 octobre et le 22 novembre.

Tableau n ฯ: Cum	uls mesur	és sur la pe	ériode de fo	onctionneme	nt
et sur la période d		-			
-					
		date	date de	cumul seau	cumul seau
STATIONS	N° EPSAT	d'installation	démontage	période totale	15/04-15/10 **
0171110110	11 21 0711		Germanage	porrodo totaro	10,0110,10
ALKAMA	43	25.03.02	13.11.02	360,2	360,2
BANIZOUMBOU	11	28.03.02	05.11.02	418,1	407,1
BERIKOIRA	21	26.03.02	29.10.02	474,5	460,5
BERKIAWEL	28	26.03.02	29.10.02	480,9	472,9
BIRNI N'KONNI	325	01.04.02	12.11.02	476,5	476,5
BOLOLADIE	84	23.03.02	31.10.02	520,6	518,6
BOUBON GOLF	85	20.03.02	30.10.02	521,7	514,7
DAREY	18	27.03.02	05.11.02	438,5	427,5
DEBEREGATI	25	23.03.02	04.11.02	582,5	578,5
FANDOU BERI	9	28.03.02	05.11.02	536,5	528,5
GAMONZON	34	21.03.02	08.11.02	668	637,5
GARDAMA KOUARA	50	29.03.02	15.11.02	490,3	442,3
GOROU GOUSSA	80	29.03.02	15.11.02	468,2	443,2
GUILAHEL	49	22.03.02	04.11.02	516	510,5
HARIKANASSOU	41	21.03.02	08.11.02	738,5	733,0
IH JACHERE	105	22.03.02	04.11.02	582,4	573,4
KAFINA	413	25.03.02	05.11.02	400,7	389,7
KALASSI	5	28.03.02	05.11.02	543	519,5
KALIGOROU	61	25.03.02	13.11.02	514,9	514,9
KARE	29	22.03.02	04.11.02	724	709,0
KOKORBE FANDOU	73	27.03.02	22.11.02	468	461,0
KOLLO	54	18.03.02	07.11.02	493,8	455,3
KOURE KOBADE	26	19.03.02	14.11.02	685,9	640,9
KOURE SUD	51	19.03.02	14.11.02	673,5	641,3
KOYRIA	82	20.03.02	30.10.02	423	416,5
MARADI	416	01.04.02	13.11.02	439,2	435,0
MASSIKOUBOU	78	26.03.02	06.11.02	503,4	500,4
NIAMEY AEROPORT	94	13.03.02	29.10.02	441,1	374,2
NIAMEY IRI	83	13.03.02	29.10.02	542,3	442,4
NIAMEY ORSTOM	70	13.03.02	20.11.02	516,8	516,5
SANDIDEY	57	21.03.02	08.11.02	620	581,0
TAHOUA	269	01.04.02	13.11.02	360,9	360,9
TANABERI	32	18.03.02	07.11.02	917,3	896,3
TILLABERI	414	20.03.02	30.10.02	315,7	309,7
TORODI	86	23.03.02	31.10.02	561,8	561,0
WANKAMA	116	27.03.02	05.11.02	342,5	329,7
YILLADE	35	19.03.02	14.11.02	720,1	720,1
ZINDER	315	02.04.02	13.11.02	268	268,0

Tableau 2.3: Planning d'installation des stations et cumuls mesurés sur la période de fonctionnement et sur la période 15 avril - 15 octobre, pour les stations du degré carré (a) et celles du réseau synoptique (b).

B. Qualité de l'acquisition

1. Pannes

En 2002, le taux de fonctionnement reste à un bon niveau en ce qui concerne les 33 pluviographes du degré carré, le taux atteignant 97,24 % (209 jours de panne pour 7559 jours d'appareillage). En revanche, les appareils du réseau synoptique ont connu de nombreuses pannes, ce qui amène le taux de fonctionnement global à seulement 89,38 %. (**Tableau 2.4 : Période de fonctionnement en 2002**).

Terroue de ronctio			<i>(=)</i> .			8			
	EDC AT	NOED				0000			***************************************
	EPSAI	- NGEK	: Période	e de foncti	onnement e	2002			***********************
						8 9 9 9 9 9 9 9 9 9 9 9			
STATIONS		PERIO	DES DE	FONCT	IONNEM	IENT			
	MARS	AVRIL	MAI	JUIN	JUILLET	AOUT	SEPT	OCT	NOV
ALKAMA	-								
BANIZOUMBOU									-
BERIKOIRA	-								
BERKIAWEL	-								
BIRNI N'KONNI									
BOLOLADIE	-		•						
BOUBON GOLF									
DAREY									-
DEBEREGATI	-								-
FANDOU BERI									-
GAMONZON									-
GARDAMA KOUARA									
GOROU GOUSSA			-						
GUILAHEL	-								-
HARIKANASSOU									-
IH JACHERE	-								-
KAFINA	-								-
KALASSI									-
KALIGOROU	-								
KARE	-								-
KOKORBE FANDOU	-								
KOLLO									-
KOURE KOBADE									
KOURE SUD									
KOYRIA									
MARADI				-					
MASSIKOUBOU	-								-
NIAMEY AEROPORT									
NIAMEY IRI									
NIAMEY ORSTOM									
SANDIDEY									-
TAHOUA									
TANABERI									-
TILLABERI									
TORODI	-								
WANKAMA	-								-
YILLADE									
ZINDER				-					

Tableau 2.4 : Période de fonctionnement en 2002

2. Comparaison valeurs seau et valeurs augets

L'écart entre le cumul augets et le cumul seau pour la saison est faible (**Tableau 2.5 : Comparaison des valeurs totales de la saison (mm), seau et augets**). Sur la saison, pour ce qui est des 27 postes sans lacune, l'écart relatif moyen seau-augets est égal à 1.6 %.

	Comparai	son des valeur	s totales de	la saison	
		eau et augets en m			
	* d	lelta = (augets-seau	ı)/seau		
		Période de			
STATIONS	N° EPSAT	comparaison	cumul augets	cumul seau	DELTA %
ALKAMA	43	25.03/13.11.02	359,0	360,2	-0,3
BANIZOUMBOU	11	28.03/05.11.02	423,0	418,1	1,2
BERIKOIRA	21	26.03/29.10.02	480,5	474,5	1,3
BERKIAWEL	28	26.03/29.10.02	496,0	480,9	3,1
BIRNI N'KONNI	325	01.04/12.11.02	7,5	476,5	-98,4
BOLOLADIE	84	23.03/31.10.02	520,6	435,5	19,5
BOUBON GOLF	85	20.03/30.10.02	542,0	521,7	3,9
DAREY	18	27.03/05.11.02	362,0	438,5	-17,4
DEBEREGATI	25	23.03/04.11.02	581,0	582,5	-0,3
FANDOU BERI	9	28.03/05.11.02	557,0	536,5	3,8
GAMONZON	34	21.03/08.11.02	667,0	668,0	-0,1
GARDAMA KOUARA	50	29.03/15.11.02	494,5	490,3	0,9
GOROU GOUSSA	80	29.03/15.11.02	463,5	468,2	-1,0
GUILAHEL	49	22.03/04.11.02	357,5	516,0	-30,7
HARIKANASSOU	41	21.03/08.11.02	741,5	738,5	0,4
IH JACHERE	105	22.03/04.11.02	596,5	582,4	2,4
KAFINA	413	25.03/05.11.02	410,0	400,7	2,3
KALASSI	5	28.03/05.11.02	556,5	543,0	2,5
KALIGOROU	61	25.03/13.11.02	530,5	514,9	3,0
KARE	29	22.03/04.11.02	734,5	724,0	1,5
KOKORBE FANDOU	73	27.03/22.11.02	476,5	468,0	1,8
KOLLO	54	18.03/07.11.02	499,0	493,8	1,1
KOURE KOBADE	26	19.03/14.11.02	701,5	685,9	2,3
KOURE SUD	51	19.03/14.11.02	685,5	673,5	1,8
KOYRIA	82	20.03/30.10.02	426,5	423,0	0,8
MARADI	416	01.04/13.11.02	424,5	439,2	-3,3
MASSIKOUBOU	78	26.03/06.11.02	505,5	503,4	0,4
NIAMEY AEROPORT	94	13.03/29.10.02	454,0	441,1	2,9
NIAMEY IRI	83	13.03/29.10.02	539,5	542,3	-0,5
NIAMEY ORSTOM	70	13.03/20.11.02	471,0	516,8	-8,9
SANDIDEY	57	21.03/08.11.02	619,0	620,0	-0,2
TAHOUA	269	01.04/13.11.02	1,5	360,9	-99,6
TANABERI	32	18.03/07.11.02	906,5	917,3	-1,2
TILLABERI	414	20.03/30.10.02	178,0	315,7	-43,6
TORODI	86	23.03/31.10.02	567,5	561,8	1,0
WANKAMA	116	27.03/05.11.02	317,0	342,5	-7,4
YILLADE	35	19.03/14.11.02	738,0	720,1	2,5
ZINDER	315	02.04/13.11.02	316,5	268,0	18,1

Tableau 2.5 : Comparaison des valeurs totales de la saison (mm), seau et augets.

III. Analyse spatiale de la saison

A. Analyse des cumuls saisonniers

1. Description des cumuls saisonniers : répartition spatiale des hauteurs tombées

Cette année encore, la variabilité spatiale des cumuls saisonniers sur la zone est très importante. Le rapport entre la valeur la plus faible (342,5 mm, station de Wankama) et la plus forte (917,3 mm, station de Tanaberi) atteint 2,68, chiffre de l'ordre de ceux observés lors des années 1997 et 1998.

Globalement, les isohyètes s'agencent assez parallèlement du Nord au Sud (Figure 3.1 : Isohyètes (mm) de la saison des pluies 2002 (15 avril-15octobre) sur le degré carré de Niamey (33 stations)), surtout pour la zone de latitude médiane, selon le gradient pluviométrique que l'on observe à grande échelle sur l'Afrique de l'Ouest. Ce phénomène n'est cependant pas observable tous les ans. Au sein de cet agencement global, on note que le Sud central (stations de Kare, Tanaberi et Yillade) a bénéficié de loin des plus fortes précipitations. Le Nord-Est (stations de Wankama, Kafina et Alkama) est lui fortement déficitaire, en dessous des 400 mm, voire des 350 mm (Wankama).

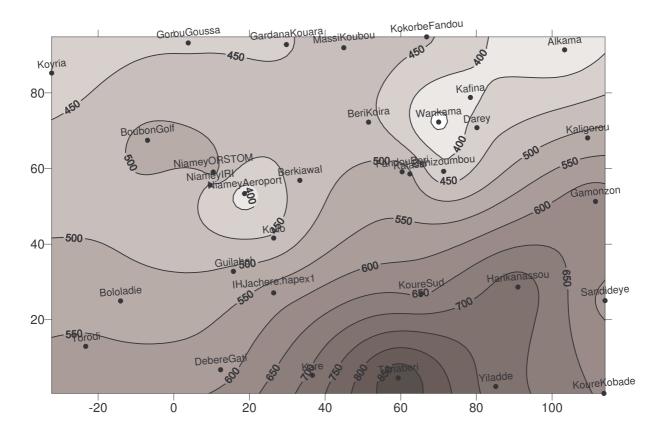


Figure 3.1 : Isohyètes (mm) de la saison des pluies 2002 (15 avril-15octobre) sur le degré carré de Niamey (33 stations).

Le gradient observé entre les stations ayant enregistrées le minimum et le maximum, respectivement à Wankama et Tanaberi, est d'environ 8,5 mm.km⁻¹, ce qui est bien supérieur au gradient climatologique généralement observé au Niger. Cependant, on ne peut bien sûr pas parler là de gradient moyen.

2. Ajustement d'une loi normale sur les cumuls saisonniers

Comme pour la plupart des années, exception faite de la saison 1992, les cumuls saisonniers enregistrés sur le degré carré, pour la période de référence 15 avril-15 octobre, se répartissent selon une loi normale. Cette année, la loi normale a une moyenne arithmétique de 523,6 mm et un écart-type de 120,7 mm. (Figure 3.2: Ajustement d'une loi normale sur les cumuls de la période 15 avril – 15 octobre)

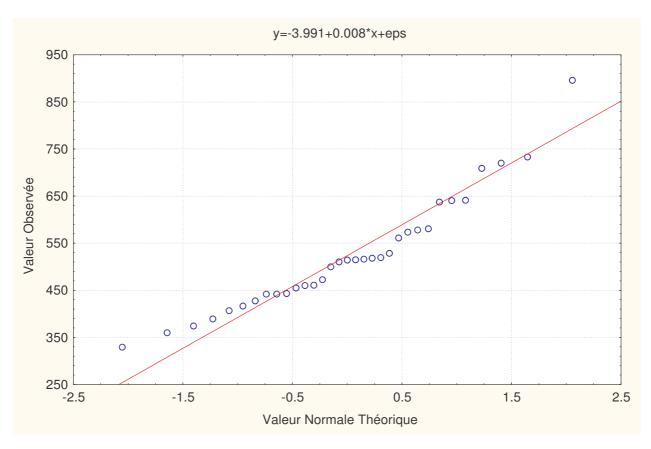


Figure 3.2: Ajustement d'une loi normale sur les cumuls de la période 15 avril – 15 octobre

3. Structure spatiale des cumuls : caractéristiques du variogramme des cumuls saisonniers

Le variogramme du cumul saisonnier montre une structure classique, avec un palier et une portée d'environ 60 km, valeur supérieure à celles trouvées les années précédentes (entre 10 km et 30 km), résultant de la structure nord-sud assez homogène sur tout le degré carré. On peut modéliser cette structure, tout au moins sur les plus faibles distances, par une fonction gaussienne de portée 60 km et de palier 22000 mm², auquel on ajoute un effet de pépite de

2350 mm². (Figure 3.3: Fonction de structure des cumuls (15 avril - 15 octobre), et essai d'ajustement par un variogramme gaussien)

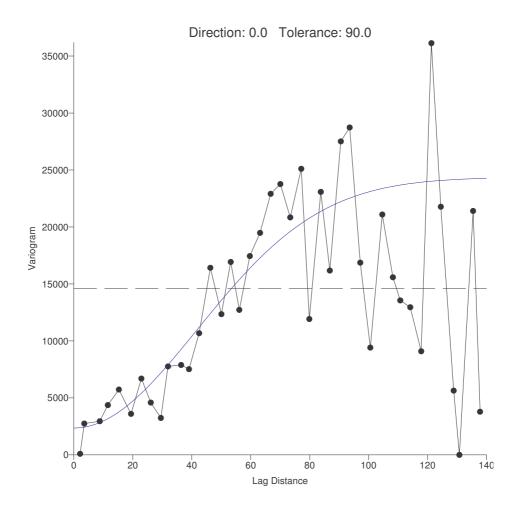


Figure 3.3: Fonction de structure des cumuls (15 avril - 15 octobre), et essai d'ajustement par un variogramme gaussien

La carte obtenue à partir ce variogramme (Figure 3.4 : Isohyètes du cumul saisonnier d'après le modèle gaussien, sur le degré carré, Figure 3.5 : Cartes de l'écart type suivant le modèle gaussien, sur le degré carré) est assez proche de celle obtenue sans l'utilisation de variogramme (Figure 3.1 : Isohyètes (mm) de la saison des pluies 2002 (15 avril-15octobre) sur le degré carré de Niamey (33 stations)).

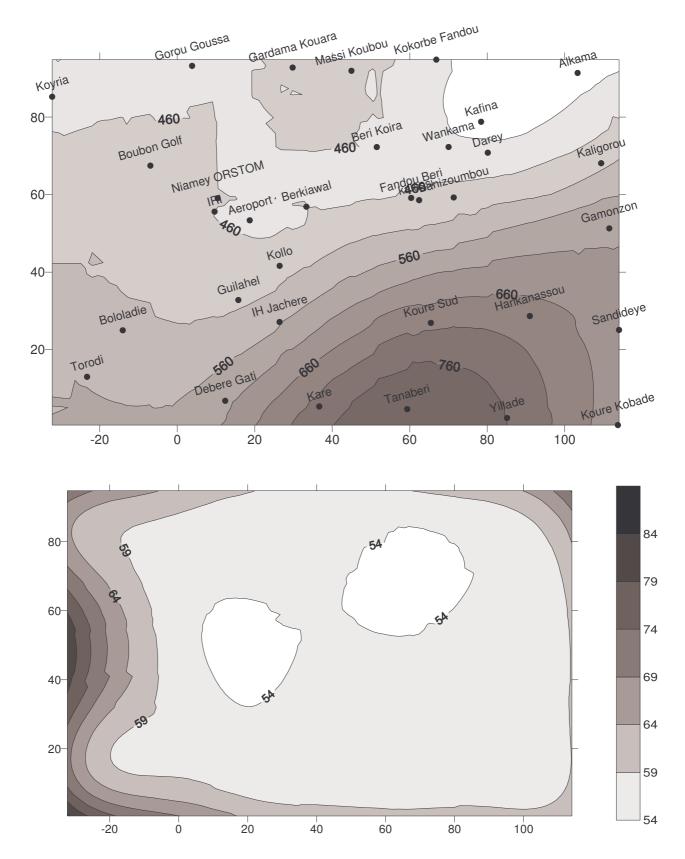


Figure 3.4 : Isohyètes du cumul saisonnier d'après le modèle gaussien, sur le degré carré

Figure 3.5: Cartes de l'écart type suivant le modèle gaussien, sur le degré carré

4. Variogramme des résidus à la dérive climatologique

Sachant l'existence d'un gradient climatologique ou d'une dérive, on construit le variogramme des résidus. Ce gradient a été estimé à partir du calcul des moyennes des cumuls saisonniers, sur des bandes latitudinales de 20 km de large. Il faut noter que dans le but d'homogénéiser la répartition du nombre de stations au sein de chaque bande et de limiter les surabondances locales de données, seule une station fut prise en compte à Niamey (celle du site IRD). Cela permet de moyenner dans chaque bande à partir de 6 ou 7 stations et de construire un graphique des moyennes des cumuls, calculés à partir des valeurs mesurées sur les bandes latitudinales de 20 kilomètres, par rapport à leurs distances à la limite Sud du degré carré (Figure 3.6: Moyenne des cumuls calculée à partir des valeurs mesurées sur des bandes latitudinales 20 kilomètres).

On remarque que les points forment quasiment une droite de fonction décroissante, ce qui n'est pas systématiquement observé selon les années.

Une régression linéaire fut calculée afin de pouvoir estimer le gradient :

$$M(x_i,y_i) = 693,76 - 3,2377 \text{ yi}$$

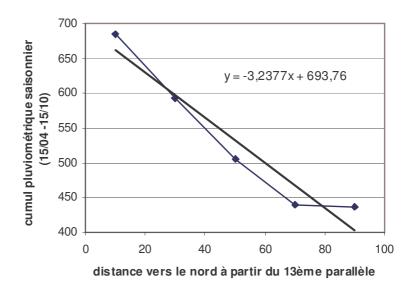


Figure 3.6: Moyenne des cumuls calculée à partir des valeurs mesurées sur des bandes latitudinales 20 kilomètres.

La valeur de 3,24 mm.km⁻¹ sur le degré carré est supérieure aux valeurs généralement observées à l'échelle du Niger (environ 1mm.km⁻¹ généralement, d'après *Lebel et al.,1992*).

La **figure 3.7** présente le variogramme des résidus. Il peut être modélisé par une courbe gaussienne de portée 50 km et de palier 8850 mm².

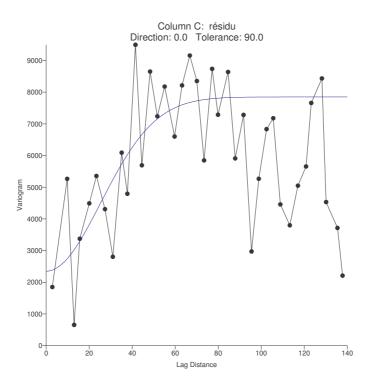


Figure 3.7 : Variogramme des résidus

B. Analyse spatiale des évènements

1. Introduction : caractéristiques des évènements majeurs

a) Comparaison du nombre d'évènements majeurs sur les dernières années et des cumuls qui leur sont dus.

Le nombre d'épisodes majeurs en 2002 est égal à 42, selon les critères d'extension spatiale et de continuité temporelle définis précédemment (cf. **Tableau 3.1: Liste des 42 événements majeurs enregistrés en 2002 à partir de 33 stations**). Par rapport aux années précédentes, le nombre d'épisodes majeurs est dans la moyenne (47 en 1991, 50 en 1992, 38 en 1993, 55 en 1994, 32 en 1995, 38 en 1996, 34 en 1997, 44 en 1998, 49 en 1999, 39 en 2000, 36 en 2001).

La circulation des systèmes convectifs sur la zone du degré carré respecte en général une circulation globalement Est-Ouest. Plus précisément, les directions de propagation sont comprises entre N-S et SE-NO, et la grande majorité est entre NE-SO et SE-NO.

On observe sur la figure 3.8 (Directions des systèmes convectifs majeurs (modélisés par les vecteurs « première station touchée – dernière station touchée ») que les évènements ayant traversé tout le degré carré sont au nombre de 17 (trait continu gras). Enfin 14 évènements coupent le degré carré sur l'un des bords, de sorte qu'il est impossible d'affirmer s'il s'agit de convections locales ou de grands systèmes convectifs. 11 événements prennent naissance ou bien dégénèrent sur la zone sans avoir parcouru une distance importante (traits pointillés), ce qui permet d'envisager que ce puisse être des convections locales. Ceci est confirmé puisqu'il apparaît que parmi ces 11 évènements pluvieux, 4 ont respecté une

circulation franchement NO-SE, contraire à la direction empruntée par les grands systèmes convectifs.

		fin	Ν	i	i	5	10	15	30	60	Т	Durée
Pluie 1	Début 18/5 a 22h10'	19/5 a 4h 0'	26	61	<u>J</u> 86	40	69	88	110	150	160	355
'	10/ 5 a 221110	15/ 5 a 4110	20	ΟĪ	00	-32	-32	-32	-32	-32	-32	555
2	23/ 5 a 22h25'	24/5 a 0h30'	11	105	35	41	70	95	160	170	175	130
_	20/ 3 a 22/123	24/ 3 a 01100		100	00	-105	-105	-105	-105	-105	-105	100
3	2/6 a 22h 0'	3/6 a 0h25'	13	413	73	108	199	283	445	515	515	150
	2, 0 4 22 0	0/ 0 d 0/120		110	, 0	-78	-78	-78	-78	-78	-78	100
4	3/ 6 a 23h50'	4/ 6 a 10h55'	32	43	86	105	172	200	276	378	620	670
				. 3		-85	-85	-85	-80	-25	-32	. · ·
5	11/6 a 3h 5'	11/6 a 9h20'	31	57	82	139	255	364	552	631	725	380
						-9	-9	-9	-9	-9	-9	
6	14/6 a 1h40'	14/6 a 8h25'	29	73	105	114	193	242	331	480	915	410
						-50	-50	-50	-83	-83	-85	
7	15/6 a 10h35'	15/6 a 12h40'	15	26	35	39	69	80	110	125	140	130
						-26	-26	-26	-26	-26	-26	
8	23/6 a 2h 0'	23/6 a 3h30'	11	70	84	62	116	139	170	175	175	95
						-83	-83	-83	-83	-83	-83	
9	28/6 a 23h30'	29/6 a 2h10'	14	28	86	132	245	312	446	485	485	165
						-28	-28	-28	-28	-28	-28	
10	6/7 a 21h25'	6/7 a 23h15'	10	57	29	59	88	116	151	155	155	115
						-29	-32	-32	-32	-32	-32	
11	10/7 a 0h55'	10/7 a 4h40'	23	41	29	55	86	121	199	313	340	230
						-43	-43	-32	-32	-32	-32	
12	10/7 a 4h55'	10/7 a 7h30'	12	70	32	10	10	10	20	25	40	160
						-25	-25	-25	-32	-29	-32	
13	20/7 a 5h 0'	20/7 a 10h45'	32	61	84	195	290	375	473	495	525	350
.						-86	-86	-86	-86	-86	-86	•
14	22/7 a 3h50'	22/7 a 5h15'	11	26	25	24	44	54	65	75	75	90
4.5	00/7 - 45/05/	00/7 - 00/55	00	00	00	-26	-26	-26	-26	-26	-26	4.45
15	26/7 a 15h35'	26/7 a 22h55'	23	82	86	131	240	314	387	405	420	445
16	28/7 a 13h10'	28/7 a 18h10'	29	34	86	-83 121	-83 204	-83 271	-83 332	-83 340	-83 425	305
10	20/ / a 13111U	20/ / d 10111U	29	34	00	-73	-73	-73	-73	-73	-32	303
17	30/7 a 23h50'	31/7 a 10h 5'	32	57	32	-73 152	-73 278	-73 362	-73 541	-73 721	-32 1355	620
' '	50/ / a 251150	51/ / a 1011 5	J <u>Z</u>	Ji	٥٤	-50	-50	-50	-34	-34	-41	020
18	5/8 a 6h50'	5/8 a 11h50'	19	57	32	123	224	319	-54 557	-34 707	780	305
'	5/ 5 a 01100	5/ 5 a 1 11150	.0	01	<i>52</i>	-41	-32	-32	-32	-32	-32	000
19	6/8 a 17h55'	6/8 a 20h35'	20	61	50	42	60	78	102	120	125	165
	5, 0 %	5, 5 & E01100	_0	٠.		-413	-34	-34	-34	-34	-34	
20	14/8 a 4h50'	14/8 a 11h50'	32	43	82	152	273	323	510	619	740	425
				-	- —	-51	-51	-70	-54	-54	-21	
21	17/8 a 14h35'	17/8 a 17h25'	16	41	57	85	149	208	330	385	385	175
		-	-			-26	-26	-26	-26	-26	-26	
22	20/8 a 22h10'	21/8 a 0h40'	25	57	86	86	156	207	285	370	370	155
						-57	-57	-57	-54	-54	-54	
23	23/8 a 4h20'	23/8 a 6h30'	10	50	29	73	139	180	254	275	275	135
						-50	-85	-85	-85	-85	-85	
24	23/8 a 15h25'	23/8 a 20h10'	29	61	25	65	110	145	210	229	360	290
						-18	-18	-18	-18	-34	-34	

25	26/8 a 0h20'	26/8 a 4h35'	28	82	94	91	152	198	306	340	475	260
						-83	-78	-70	-83	-83	-70	
26	26/8 a 23h10'	27/8 a 4h 0'	26	26	86	113	197	235	255	255	330	295
						-26	-26	-26	-26	-26	-35	
27	28/8 a 22h40'	29/8 a 2h50'	33	57	26	124	223	286	359	385	475	255
						-51	-51	-51	-51	-51	-51	
28	29/8 a 7h45'	29/8 a 11h30'	32	32	86	27	35	50	65	61	95	230
						-51	-41	-41	-51	-51	-51	
29	29/8 a 12h10'	29/8 a 14h 5'	18	94	85	55	80	89	89	110	110	120
						-43	-43	-43	-43	-43	-43	
30	3/9 a 15h40'	3/9 a 17h55'	21	26	86	52	78	107	154	175	175	140
						-26	-29	-29	-41	-41	-41	
31	6/9 a 22h35'	7/9 a 4h40'	31	43	50	144	212	252	278	423	680	370
						-21	-21	-21	-61	-61	-61	
32	8/9 a 23h10'	9/9 a 4h15'	33	413	86	142	273	392	599	686	785	310
						-35	-35	-35	-35	-35	-35	
33	12/9 a 23h 0'	13/9 a 4h 0'	33	57	32	90	161	215	357	415	490	305
						-29	-29	-29	-29	-32	-32	
34	17/9 a 5h40'	17/9 a 9h25'	33	57	86	87	153	198	257	275	305	230
						-11	-35	-35	-11	-11	-35	
35	19/9 a 5h 0'	19/9 a 7h 0'	10	57	29	29	40	45	65	70	70	125
						-35	-35	-35	-26	-26	-26	
36	19/9 a 23h55'	20/9 a 1h50'	16	57	32	49	80	92	95	95	100	120
						-57	-57	-57	-57	-57	-57	
37	24/9 a 9h15'	24/9 a 15h50'	32	26	82	116	219	283	404	528	555	400
						-21	-21	-21	-50	-41	-41	
38	29/ 9 a 13h40'	29/9 a 17h45'	23	61	82	60	92	116	198	215	220	250
						-49	-9	-49	-49	-49	-49	
39	29/ 9 a 17h50'	29/9 a 20h40'	14	49	82	10	15	17	30	50	70	175
						-28	-105	-83	-82	-82	-82	
40	1/10 a 22h35'	2/10 a 7h35'	27	57	82	83	161	232	409	679	840	545
						-32	-32	-32	-32	-32	-32	•
41	6/10 a 6h 5'	6/10 a 12h 0'	32	57	86	52	71	82	132	155	205	360
			J -		- •	-50	-50	-50	-54	-50	-54	
42	15/10 a 0h55'	15/10 a 6h 0'	28	43	78	66	106	138	247	350	380	310
				.0	. 0	-70	-57	-57	-57	-57	-57	0.0
						, ,	<u> </u>					

Maxima	5 mn	195	30 mn	599
	10 mn	290	60 mn	721
	15 mn	392	totalité	1355

Tableau 3.1: Liste des 42 événements majeurs enregistrés en 2002 à partir de 33 stations.

Un événement majeur est comptabilisé dés lors que 30% (P) au moins des stations en fonctionnement (N) enregistrent une quantité de pluie supérieure à 1 mm. Les cumuls T sont exprimés en 1/10 mm ainsi que les quantités maximales de pluies enregistrées pendant l'événement en 5, 10, 15, 30, 60 minutes. Les nombres de taille réduite correspondent aux stations où l'on a relevé l'intensité maximale à un pas de temps donné pendant l'événement. i, j correspondent respectivement à la première et à la dernière station touchée. Le temps de passage de l'événement sur le degré carré est donné en minutes. La moyenne pluviométrique krigée par événement, sur le degré carré, est donnée en millimètre.

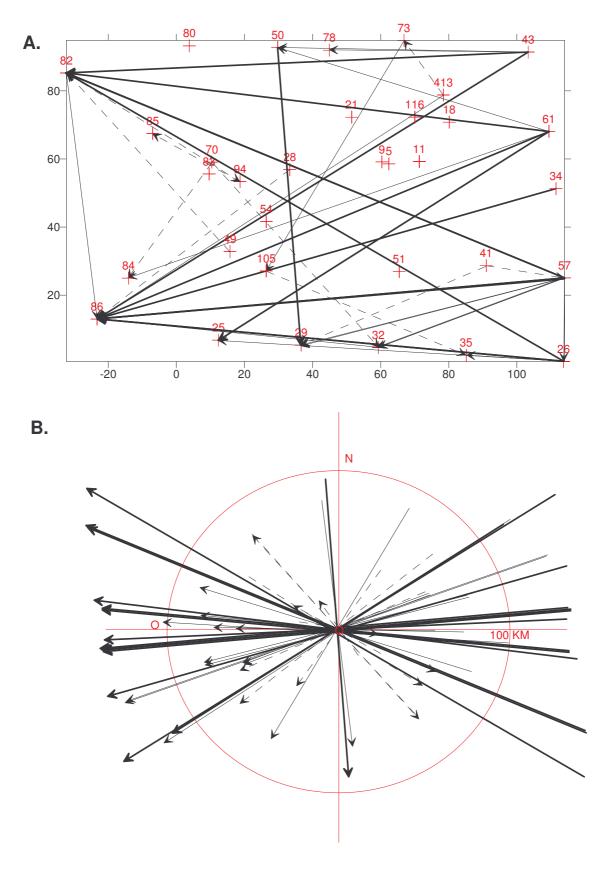


Figure 3.8: Directions des systèmes convectifs majeurs (modélisés par les vecteurs « première station touchée – dernière station touchée »).

Trait continu gras : évènements traversant tout le degré carré

Trait pointillé: évènement prenant naissance ou dégénérant dans la zone

Trait continu fin : évènement dont l'extension est visiblement « moyenne » ou impossible à déterminer compte tenu du réseau de stations

- A. Sur le degré carré (les numéros Epsat des stations sont indiqués)
- B. Sur une boussole (la longueur des flèches est proportionnelle à la distance entre les stations de « départ » et d' « arrivée »).

Le **tableau 3.2** résume les différentes caractéristiques des événements majeurs pour les années 1991 à 2002. L'apport des données de 2002 dans la relation entre le nombre d'évènements majeurs et le cumul saisonnier ne modifie pas le r², égal à 0,52 : depuis quelques années, ce paramètre semble stagner autour de 0.5, ce qui laisse à penser que le nombre d'évènements majeurs n'est pas un critère très pertinent pour évaluer la qualité de la saison des pluies.

	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
nb Èvts > 30 %sts	47	50	38	55	32	38	34	44	49	39	36	42
cumul saisonnier	522	513	463	663	495	503	418	659	563	443	463	524
cumul Èvts majeurs	519	504	424	538	454	446	366	593	480	383	358	471
% evt maj saison	99,4	98,2	91,6	81,1	91,7	88,7	87,6	90,0	85,3	86,5	77,3	90,0
80 %sts cumul en %	80	85	75	71	84	80	65	72	69	64	59	80
80 %sts nbre en %	64	54	70	55	66	68	41	50	51	44	44	45

Tableau 3.2: Comparaison pour les années 1991 à 2002 de l'importance des évènements majeurs

Comparaison du nombre d'événements majeurs, du cumul saisonnier, du cumul total des évènements majeurs (au moins 30 % de stations touchées) et du pourcentage en nombre d'épisodes et en hauteur du total saisonnier des évènements ayant touchés plus de 80 % des stations en fonctionnement.

Sur les douze années, on peut, par contre, constater que la participation des évènements majeurs dans le cumul total de la saison varie d'une année sur l'autre entre 77,3 % et 99,5 %. Ceci ne semble pas être corrélé à la qualité de la saison, mais cela reste un bon indicateur de l'importance des évènements locaux à faible dispersion spatiale et de leur contribution plus ou moins grande au cumul saisonnier.

b) Histogramme des cumuls provenant des évènements majeurs de la saison 2002

L'histogramme des cumuls moyens des épisodes majeurs sur le degré carré (**Figure 3.9**: **Histogramme des cumuls moyens en mm des épisodes spatiaux majeurs de la saison 2002**) montre que les épisodes de cumul compris entre 5 et 15 mm représentent la plus grande part du cumul évènementiel (66,7%). Néanmoins, on notera également l'importance en 2002 des évènements aux fortes précipitations, notamment la classe des 20-25 mm de cumul (14,3%).

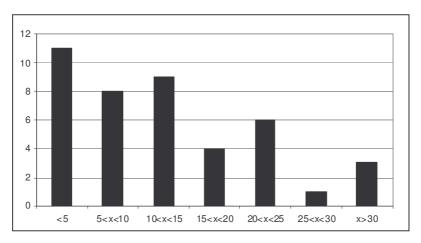


Figure 3.9: Histogramme des cumuls moyens en mm des épisodes spatiaux majeurs de la saison 2002

2. Calcul du variogramme climatologique et interprétation

Le variogramme climatologique est défini comme une moyenne des variogrammes de N évènements :

$$\gamma_H^* = \frac{1}{N} \sum_{i=1}^N \gamma_i^*$$
 (Lebel et Bastin, 1985)

où:

 γ_i^* est le variogramme correspondant à l'évènement i N est le nombre d'évènement considérés.

Le variogramme est présenté en Figure 3.10.

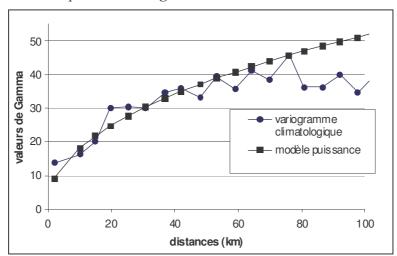


Figure 3.10: Variogramme climatologique

Le variogramme peut être modélisé de manière satisfaisante sur les plus faibles distances avec un modèle exponentiel (pépite : 6,5 coefficient de forme : 0,45). Il montre un palier de 38

mm² et une portée de 40 km environ, distance légèrement supérieure à l'ordre de grandeur de 30 km généralement observé pour les évènements pluvieux de grande extension spatiale (*Lebel, Mamni, Taupin, La pluie au Sahel : une variable rebelle à la régionalisation*).

C. Analyse des gradients locaux

1. Gradients observés au niveau saisonnier

La saison 2002 fut marquée par la présence de forts gradients locaux sur les cumuls saisonniers, notamment dans la région de Banizoumbou (correspondant à l'un des super-sites de l'expérience Hapex-Sahel). C'est ainsi qu'entre les stations de Banizoumbou (407 mm) et de Kalassi (519 mm), distantes d'environ 9 Km, le gradient avoisine les 12,5 mm.km⁻¹. Ces observations confirment celles réalisées tout au long de l'expérience Epsat-Niger, extrêmement abondantes en ce qui concerne les gradients locaux observés en fin de saison. En ce qui concerne les stations Banizoumbou et de Kalassi, lorsque l'on observe la chronologie de la constitution de ces cumuls à partir des cumuls journaliers (Figure 3.11: Chronologie des cumuls journaliers à Banizoumbou et Kalassi et Figure 3.12: Comparaison des évènements pluvieux pour les deux stations proches de Gardama Kouara et Massi Koubou : hauteurs cumulées (a) et hauteurs des évènements majeurs (b)), on constate que la divergence apparaît sur la période du 14 juin au 20 juillet. S'y succèdent les évènements pluvieux touchant exclusivement Kalassi, notamment ceux, importants en cumuls, des 01/07, 09/07 et 20/07.

Si l'on refait la comparaison, mais du point de vue des évènements majeurs seulement, on constate d'une part que l'écart du cumul final est moindre (environ 50 mm seulement), et d'autre part qu'il s'est creusé le 14 juin, mais pour un temps seulement, car il sera quasiment comblé au 28 juillet. L'événement suivant, le 30 juillet recréera cet écart.

En somme, l'important gradient entre les deux stations semble d'avantage le produit des convections localisées que des grands systèmes.

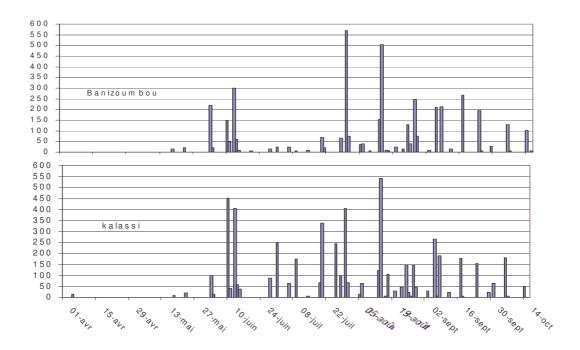
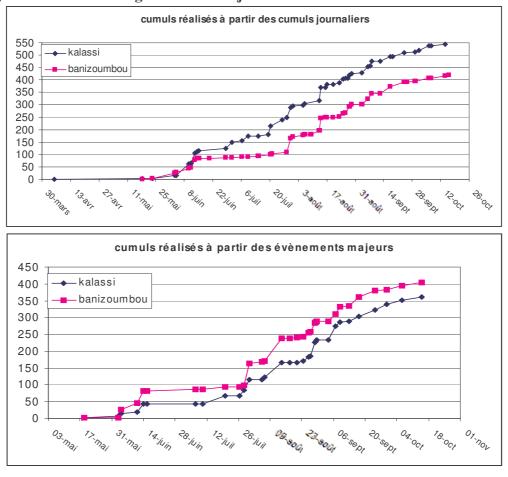
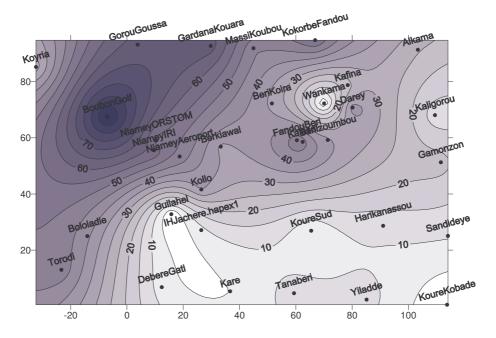


Figure 3.11 : Chronologie des cumuls journaliers à Banizoumbou et Kalassi




Figure 3.12 : Comparaison des évènements pluvieux pour les deux stations proches de Gardama Kouara et Massi Koubou : hauteurs cumulées (a) et hauteurs des évènements majeurs (b)

2. Gradients observés au niveau évènementiel

L'expérience Epsat Niger a montré que la variabilité inter stations, pour une année, était en grande partie due aux différences d'intensités enregistrées pour un évènement donné (*Lebel et al.*, 1997).

D'autre part, on sait également que la maille du réseau actuel n'est pas suffisamment fine pour ne pas lisser les petites cellules convectives (évènements du groupe 3, d'après la classification d'Amani (*Amani & al., 1996*)). Seuls les systèmes de méso échelle sont saisis. En somme, les gradients sont très importants à l'échelle de l'évènement, mais la configuration actuelle du réseau ne permet pas de tous les mettre en évidence.

On peut néanmoins étudier ceux qui sont nés du passage de grands systèmes convectifs. L'exemple suivant (**Figure 3.13: Cumul de l'évènement du 14 juin 2002**) montre le cumul enregistré lors de l'évènement du 14/06, qui toucha 88% des stations du degré carré. Il a produit un cumul total de 904 mm sur ces stations, soit pratiquement une moyenne de 27 mm/station. Sur cette pluie, le réseau de pluviographes a enregistré des cumuls extrêmes à moins de 20 km l'un de l'autre : la station de Wankama a été totalement épargnée (0 mm) alors qu'à 17 km de là, la station de Fandou Beri a reçu 48.5 mm, une des 10 valeurs les plus fortes du degré carré. Cet événement a ainsi produit un gradient maximum enregistré de 2.85 mm/km.

Figure 3.13: Cumul de l'évènement du 14 juin 2002 (début le 14/06 à 01h40, fin le 14/06 à 08h25).

3. Exemple : le cas de la station de Niamey

Trois stations distantes de mois de 10 km l'une de l'autre sont disposées dans la ville de Niamey.

Dans l'ensemble, les valeurs enregistrées en ces stations restent inférieures aux valeurs moyennes du degré carré, surtout à l'IRI dont le cumul saisonnier est inférieur de 22% au cumul moyen du degré carré (Figure 3.14: Comparaison des cumuls mensuels 2002 (mm) des 2 stations de Niamey avec les cumuls moyens mensuels sur la période 1950-89).

On constate également que les valeurs mensuelles enregistrées peuvent varier considérablement de l'une à l'autre (quasiment 50% d'écart au mois de Juillet entre les stations de l'IRD et l'aéroport). Ceci montre bien qu'au Sahel la corrélation station à station au pas mensuel n'apparaît pas stationnaire. Lorsque l'on passe au cumul saisonnier, ces différences mensuelles sont en partie lissées.

Enfin, on note que la station de l'IRD apparaît légèrement excédentaire (de pratiquement 10%) par rapport aux autres, observation similaire avec celles des dernières années (1996, 1998 et 1999).

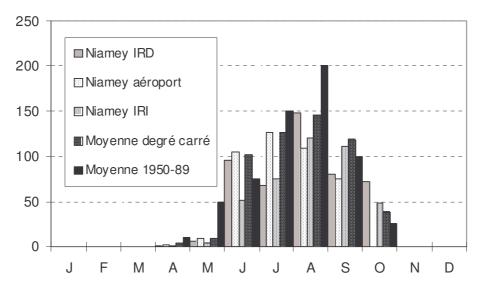


Figure 3.14: Comparaison des cumuls mensuels 2002 (mm) des 3 stations de Niamey avec les cumuls moyens mensuels sur la période 1950-89.

IV. Analyse temporelle de la saison

A. Analyse temporelle des cumuls pluviométriques

1. Introduction : déroulement de la saison 2002

En 2002, la région de Niamey a reçu sa première pluie le 5 avril (0,5 mm), mais ce mois n'a permis de totaliser que quelques millimètres sur le réseau. Le premier événement majeur au sens Epsat a eu lieu le 18 mai, touchant 79% des stations. Le mois de mai fut néanmoins très peu pluvieux, relativement à la moyenne calculée sur la période 1990-2001 (**Figure 4.1 : Evolution cumulée de la pluviométrie en 2002 (basée sur les cumuls mensuels moyens), comparée aux années précédentes**). La saison a véritablement commencée en Juin, seul mois totalisant une pluviométrie supérieure à a moyenne 1990-2001, et qui compte 7 évènements majeurs et un cumul moyen de 102,0 mm. Le mois de juillet a produit 127,0 mm de pluie en moyenne, une hauteur correcte, bien que de nombreuses régions aient eu à souffrir de mini-sécheresses au milieu du mois. Le mois d'Août, avec une moyenne de 145,0 mm, fut un peu décevant, mais la fin de saison a permis de rattraper le retard avec une pluviométrie de septembre normale (118,0 mm) et un mois d'octobre exceptionnel (38,0 mm en moyenne), apportant des pluies malheureusement trop tardives pour le mil. On notera par ailleurs que la saison 2002 s'est achevée plus tard que de coutume, le dernier événement d'importance (28 stations touchées) ayant eu lieu le 15 octobre.

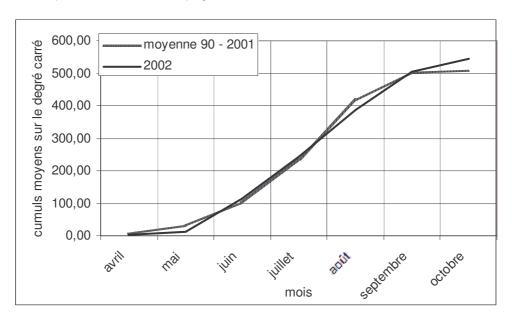


Figure 4.1 : Evolution cumulée de la pluviométrie en 2002 (basée sur les cumuls mensuels moyens), comparée aux années précédentes

2. Cumuls mensuels sur le degré carré

La saison a débuté avec un premier événement majeur (au sens où il est défini dans le **tableau 3.1**) ayant eu lieu le 18 mai entre 22h10 et 04h00. Il est arrivé par le Nord Est pour se répandre progressivement, mais de façon peu intense, sur différentes zones, produisant les cumuls maximaux aux stations de Tanaberi (16 mm), Boubon (11,5mm) et Kare (10,5mm). Le faible nombre d'évènements pluvieux et leurs faibles intensités ont engendré un cumul au mois de mai très faible, allant de 29mm à Tanaberi à 1 mm à Gorou-Goussa, avec une moyenne de 9 mm.

La saison pluvieuse a démarré véritablement en juin, qui fut assez productif, avec 7 évènements majeurs, dont 3 couvrant plus de 80% des stations et ayant une intensité moyenne supérieure à 20mm. Le cumul mensuel moyen de juin fut de 102mm (soit 19% de la pluviométrie totale). Il est à noter que si dans toute la saison, le Sud-Est de la zone est favorisé, le début de la saison fut plus favorable au Nord-Ouest (Figure 4.2 (Isohyètes mensuels (mm) de la saison des pluies 2002 obtenus par krigeage sur le degré carré de Niamey).

Le mois de juillet fut assez semblable au mois de juin, en terme de nombre d'évènements (8 évènements majeurs) et de cumul moyen (127 mm, soit 23%). Cependant, ce mois de juillet fut fortement déficitaire si on le compare aux mois de juillet des années précédentes.

Après ce mois de juillet plutôt décevant, le mois d'août fut plus encourageant, avec 12 évènements majeurs, dont 5 couvrirent plus de 80% des stations, mais leur intensité resta assez faible (seuls 2 évènements pluvieux apportèrent plus de 20 mm en moyenne). Le cumul moyen enregistré en août, 145mm (soit 27 % de la pluviométrie totale), est donc dans la moyenne par rapport aux années précédentes.

Par contre, la fin de la saison des pluies fut très bonne. En effet, le mois de septembre fut très productif, avec 10 évènements majeurs pour un total pluviométrique moyen de 119 mm (soit 22% de la pluviométrie totale). De même, le mois d'octobre fut étonnement bon, avec 3 évènements majeurs, qui tous touchèrent 100% des stations, apportant un cumul moyen de 38 mm, ce qui est notable pour un mois d'octobre. Le dernier évènement majeur eu lieu le 15 octobre.

On peut donc conclure que cette année, la pluviométrie des mois de juin, juillet, août et septembre a été répartie de façon homogène sur les 4 mois, en terme de cumuls et de nombre d'évènements majeurs.

.

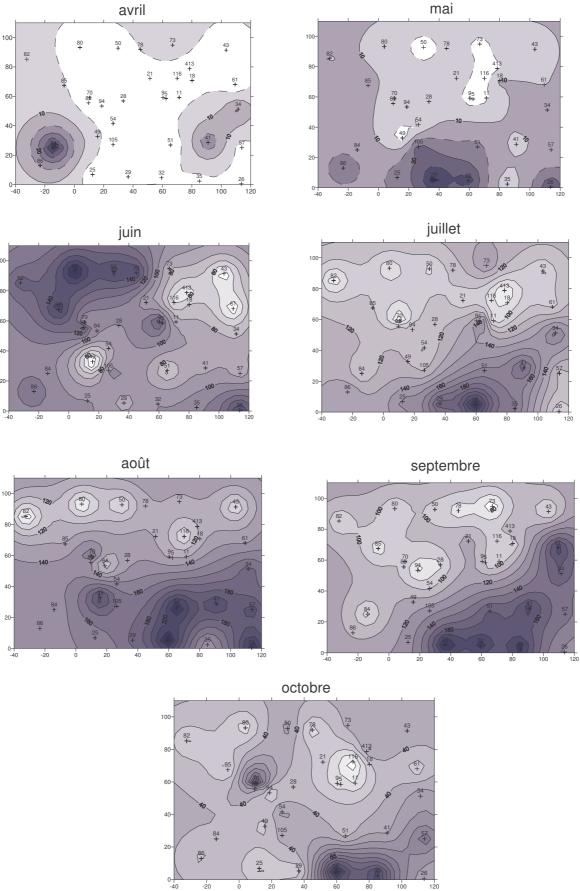


Figure 4.2 : Isohyètes mensuels (mm) de la saison des pluies 2002 obtenus par krigeage sur le degré carré de Niamey

B. Analyse temporelle des évènements pluvieux

1. Liste des évènements majeurs : comparaisons interstations et interannuelles

a) Comparaison des hyétogrammes de trois stations

L'examen des chroniques journalières de quelques stations (Figure 4.3: Chronologies des pluies journalières (mm) enregistrées sur 3 stations et Figure 4.4: Chronologie des cumuls calculés à partir des pluies journalières, sur 3 stations) confirme la prédominance de la fin du mois de juillet dans l'apport en pluie pour les stations situées à l'Est, comme Sandideye et Alkama. On note aussi l'importance du mois de septembre pour Massi Koubou, station située au Nord du degré carré.

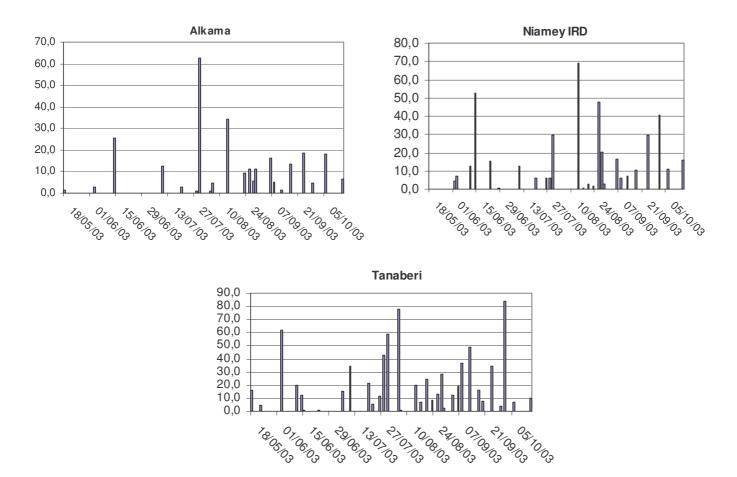


Figure 4.3: Chronologies des pluies journalières (mm) enregistrées sur 3 stations.

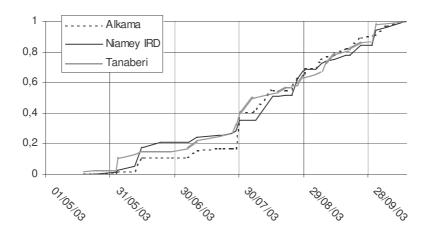


Figure 4.4 : Chronologie des cumuls calculés à partir des pluies journalières, sur 3 stations

b) Comparaison des hyétogrammes moyens de trois années

La répartition des évènements majeurs au cours de la saison 2002 peut-être comparée à celles des années 1998, année excédentaire et 2001, année déficitaire (Figure 4.5: Chronologie du cumul moyen des évènements majeurs (mm) enregistrés sur le degré carré en 1998, 2001 et 2002 et Figure 4.6: Evolution du cumul moyen des évènements majeurs (mm) enregistrés sur le degré carré en 1998, 2001 et 2002, normalisé par le cumul total).

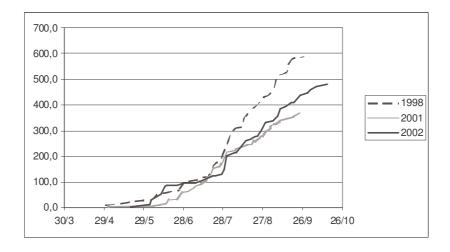


Figure 4.5: Chronologie du cumul moyen des évènements majeurs (mm) enregistrés sur le degré carré en 1998, 2001 et 2002.

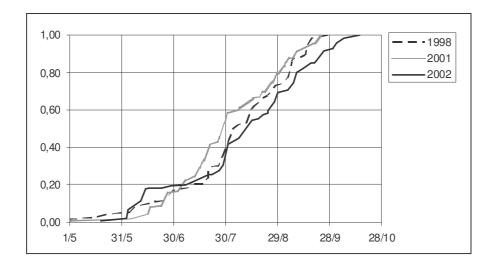


Figure 4.6 : Evolution du cumul moyen des évènements majeurs (mm) enregistrés sur le degré carré en 1998, 2001 et 2002, normalisé par le cumul total

Tout comme la a saison 2001, la saison 2002 a connu un démarrage relativement tardif (peu d'évènements majeurs jusqu'à fin mai). Cependant la première quinzaine de juin a vu une forte augmentation des cumuls moyens des événements majeurs. Cependant ceux-ci ont ensuite stagnés, jusqu'à fin juillet, période à partir de laquelle l'évolution des cumuls moyens des événements majeurs a repris une évolution similaire à celle observée en 1998. C'est donc le démarrage tardif et la période de mi-juin à fin juillet, faiblement pluvieuse, qui expliquent la sécheresse relative de 2002, comparée à 1998.

2. Caractéristiques temporelles des évènements majeurs

a) Histogramme de la durée des évènements majeurs

L'histogramme de répartition de la durée des épisodes majeurs (**Figure 4.7: Histogramme de la durée (en heures) des épisodes spatiaux majeurs de la saison 2002**) pour la saison 2002 montre une zone fortement préférentielle entre 2 et 3 h, durée d'un tiers des évènements. Il faut noter aussi qu'un grand nombre d'évènements (40%) ont eu une durée assez longue, supérieure à 5h.

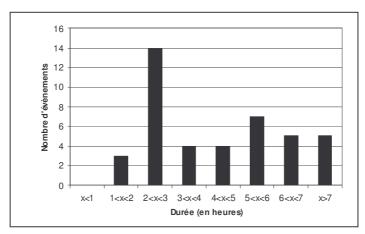
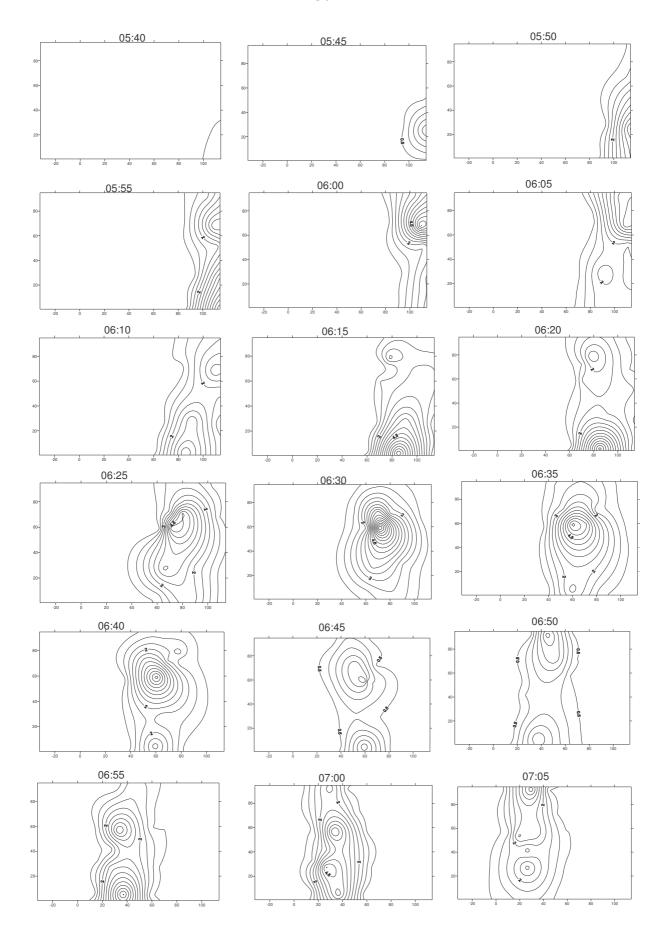


Figure 4.7: Histogramme de la durée (en heures) des épisodes spatiaux majeurs de la saison 2002.

b) Étude d'un évènement à petits pas de temps

La base de données spatialisées dont on dispose, permet de travailler à un pas de temps minimal de 5 minutes. On peut donc étudier avec une résolution relativement fine d'une part, la propagation des systèmes précipitants sur le degré carré et, d'autre part, la déformation du hyètogramme aux différentes stations touchées.

Durant la saison 2002, un certain nombres de systèmes convectifs de mésoéchelle sont passés au dessus du degré carré, mais peu ont montré une structure organisée comparable à celle d'une ligne de grain (marquage net d'un front Nord-Sud se déplaçant vers l'Est à la vitesse de déplacement d'environ 40-60 km.h⁻¹).


Cependant, la ligne de grain du 17 septembre, même si elle n'a pas donné la quantité moyenne la plus importante, présente une structure bien organisée. Outre la visualisation spatiale de la ligne de grain au pas de temps de 5 minutes, un transect Est-Ouest de 5 stations disposées au centre du degré carré permet de suivre l'évolution du hyètogramme stationnel (Figure 4.8 : Suivi spatial de l'évènement du 17/09/2002, au pas de temps 5 minutes, Figure 4.9 : Transect de suivi de l'évènement du 17/09/2002 et Figure 4.10 : Evolution de l'évènement du 17/09/2002, sur les 5 stations du transect).

L'épisode choisi a donné une lame d'eau moyenne de 14,9 mm sur le degré carré, et 100 % des stations ont été touchées. Les cumuls sur les différentes stations s'échelonnent entre 3,0 et 30,5 mm (Yillade).

La convection a abordé le réseau EPSAT-Niger dans sa partie Sud-Est, en touchant d'abord la station de KoureKobad, à 5h40 du matin. Le front est resté stationnaire durant les 20 premières minutes, temps pendant lequel le front s'est organisé progressivement et a ainsi occupé toute la partie Est du degré carré. C'est à 7h55 que l'on note la disparition effective du front de la zone du degré carré. Le front a traversée la zone du degré carré en 3h45, ce qui correspond donc à une vitesse moyenne sur l'ensemble de la traversée de 26,7 km.h⁻¹.

Les hyétogrammes au pas de temps 5 minutes sur le transect retracent bien le sens du déplacement du système. La durée de passage du front est à peu près conservée d'une station à l'autre (environ 40 minutes). La vitesse de déplacement de la zone active du front (vitesse calculée à partir du déplacement du pic d'intensité d'une station à l'autre) est en moyenne de 90km.h⁻¹. Elle est très supérieure à la vitesse globale de traversée du front, à cause de la phase initiale d'organisation du front et de la phase finale de disparition du front.

La forme des hyétogrammes est similaire d'une station à l'autre, avec un pic d'activité au bout de 15 minutes, ce qui correspond à la forme habituelle : front et traîne. On peut par ailleurs noter la diminution progressive de l'intensité à partir de la station de Banizoumbou. Les cumuls totaux sur la durée de l'épisode correspondant au passage du front sur les 5 stations sont respectivement d'Est en Ouest : 25mm, 27,5mm, 17,5 mm, 10,5 mm et 11mm.

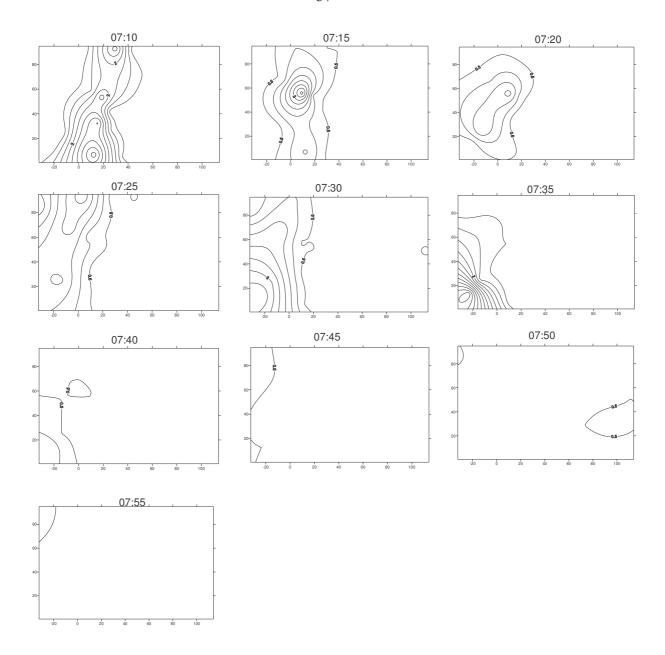


Figure 4.8 : Suivi spatial de l'évènement du 17/09/2002. Pas de temps 5 minutes.

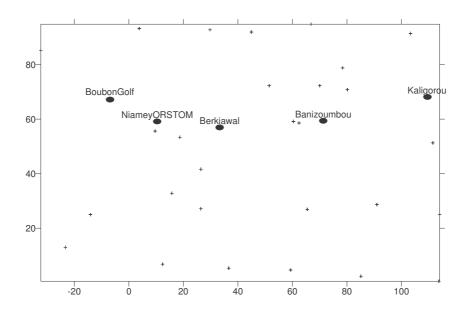


Figure 4.9 : Transect de suivi de l'évènement du 17/09/2002

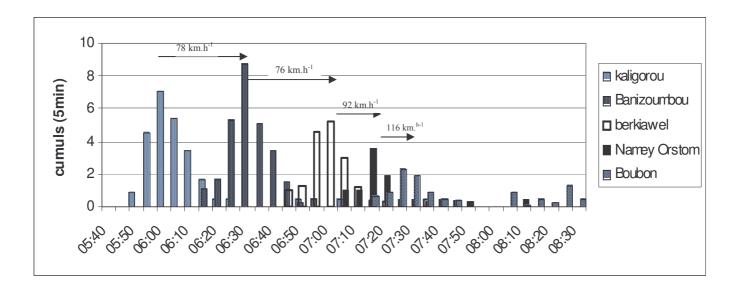


Figure 4.10 : Evolution de l'évènement du 17/09/2002, sur les 5 stations du transect

C. Début de saison des pluies : comparaison critère climatique, hydrologique et agronomique

1. Définitions et calcul des dates de démarrages selon différents critères.

Ce passage se réfère à l'article « Démarrage de la saison des pluies au Sahel : variabilité à des échelles hydrologique et agronomique », de M. Balme et al., 2002.

D'après Maud Balme (2002), « le **critère** « **climatique** » prend comme dates de démarrage et de fin de la saison des pluies les dates du premier et dernier événement pluvieux EPSAT-Niger, indiquant l'apparition puis la disparition d'une convection organisée ». La date de démarrage de la saison 2002 est, considérant ce critère, le 18 mai.

« Le **critère** « **agronomique** » donne pour chaque station comme date de démarrage de la saison après le 1^{er} mai, au moins 20 mm de pluie sur 3 jours et pas d'épisode sec excédant 7 jours dans les 30 jours qui suivent (pour éviter les faux départs), et comme date de fin de saison après le 1^{er} septembre, 20 jours consécutifs sans pluie ».

Maud Balme a également défini « le **critère** « **hydrologique** », qui fait commencer la saison en chaque station à la première pluie supérieure ou égale à un seuil (0.5 mm, 2.5 mm ou 5 mm) enregistrée, et l'arrête à la dernière pluie supérieure ou égale au seuil. La gamme de seuils explorés correspond au minimum enregistré par les pluviographes (0.5 mm) et à un seuil (5 mm) susceptible de générer un écoulement dans cette région ».

Les critères hydrologique et agronomique sont définis pour chaque station séparément alors que le critère climatique s'applique globalement à toute la zone d'étude. Pour une année donnée, on a donc plusieurs dates de démarrage agronomiques et hydrologiques possibles sur la zone d'étude mais une seule date climatique.

2. Résultats

a) Variabilité inter annuelle

Les dates de démarrage et de fin de la saison 2002, des points de vue hydrologique, climatique et agronomique, sont dans la moyenne de la période 1991-2002 (Figure 4.11 : Comparaison des dates de démarrage et de fin de la saison des pluies suivant le critère agronomique et le critère climatique).

En 2002, la durée de la saison du point de vue climatique est de 150 jours, alors que sur la période 1991- 2001 la moyenne est de 151 jours avec un écart type de 14 jours (*d'après Balme, 2002*). Du point de vue agronomique, la durée de la saison 2002 est de 98 jours pour une moyenne de 105 jours et un écart type de 6 jours sur la période 1992 – 2001. (**Figure 4.12 : Comparaison, au cours des 10 dernières années de l'expérience Epsat, des cumuls saisonniers, suivant les 3 critères de définition de la saison pluvieuse**).

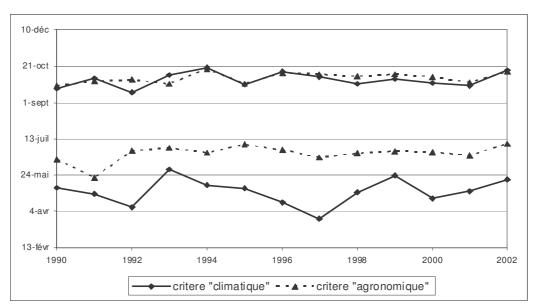


Figure 4.11 : Comparaison des dates de démarrage et de fin de la saison des pluies suivant le critère agronomique et le critère climatique

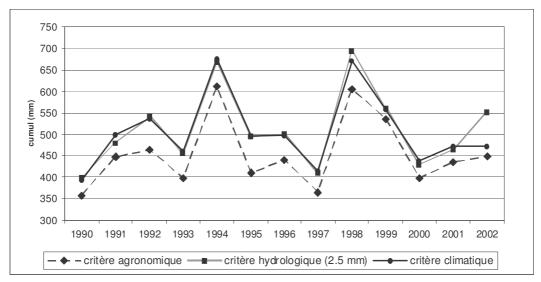


Figure 4.12 : Comparaison, au cours des 10 dernières années de l'expérience Epsat, des cumuls saisonniers, suivant les 3 critères de définition de la saison pluvieuse

b) Variabilité spatiale : comparaison avec les années précédentes

Cette année, la répartition des démarrages de saison montre une relative ressemblance entre les critères hydrologiques et climatiques, qu'on ne trouvait pas forcément les autres années (1997, 1992). La zone Sud-Ouest marque les principales différences. On constate également que les dates de démarrage ne semblent se conformer à aucun gradient d'ensemble très net, quoique le démarrage « agronomique » semble avoir été précoce sur l'ensemble de l'Est du degré carré. (**Figure 4.13 : Dates de démarrage de la saison des pluies sur l'observatoire**

EPSAT-Niger pour 2 années (2001 et 2002), à gauche suivant le critère hydrologique (seuil 2.5 mm), à droite suivant le critère agronomique).

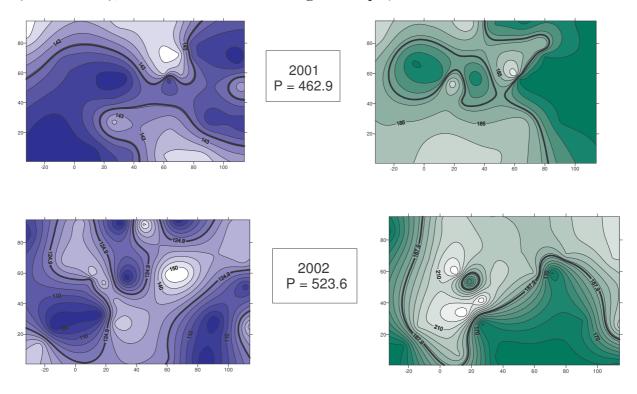


Figure 4.13: Dates de démarrage de la saison des pluies sur l'observatoire EPSAT-Niger pour 2 années (2001 et 2002), à gauche suivant le critère hydrologique (seuil 2.5 mm), à droite suivant le critère agronomique.

Plus les teintes sont claires, plus la date de démarrage est tardive. L'isoligne en gras indique la date moyenne de démarrage de l'année considérée (numéro du jour de l'année). Les isolignes sont écartées de 5 jours. Est indiqués aussi le cumul pluviométrique annuel (P).

Conclusion

Le réseau pluviométrique sur le degré carré (33 pluviomètres) a eu un très bon taux de fonctionnement en 2002, ce qui ne fut pas le cas du réseau synoptique (5 pluviomètres) qui a connu de nombreuses défaillances.

Sur la zone EPSAT-Niger, la pluviométrie de la saison 2002 a été dans la moyenne des saisons 1968-2001, avec un cumul de 523,6 mm sur le degré carré, et ce malgré un démarrage relativement tardif de la saison (mois de mai très peu pluvieux), en partie grâce à un bon mois de juin et une fin de saison tardive et pluvieuse. Certaines stations ont subi, comme habituellement, une mini-sécheresse au mois de juillet.

Comme les autres années, on observe une forte hétérogénéité spatiale de la pluviométrie à tous les pas de temps, avec un gradient climatique Nord-Sud et de forts gradients locaux. De façon habituelle, les systèmes convectifs organisés en fronts Nord-Sud se sont déplacés majoritairement dans la direction Est-Ouest. Le nombre d'évènements pluvieux majeurs en 2002 a été des plus faibles, avec de nombreux évènements de courte durée, mais plusieurs évènements fort pluvieux.

Annexes

- A. Détail des pannes par stations
- B. Jours de fonctionnement et pannes
- C. Coût de fonctionnement de la campagne 2002
- D. Tableau des cumuls journaliers aux stations de Banizoumbou, Alkama, Torodi, Niamey IRD, Niamey aéroport, Koryia, KoureKobade
- E. Cumuls mensuels enregistrés aux 38 stations du réseau (cône de réception 1,50m au dessus du sol), pour les mois d'avril à octobre 2002
- F. Cartes mensuelles d'isohyètes obtenues par krigeage des 33 stations du réseau (cône de réception 1,50m au dessus du sol), pour les mois de mai à octobre 2002
- G. Liste des fichiers créés lors du traitement des données pluviographiques

A. Détail des pannes par stations

	Jours	jours	jours	% jours	
Stations	fonctionnement		enregistrés	pannes	CAUSES PANNES
ALKAMA	233	0	233	0.0	
BANIZOUMBOU	222	0	222	0.0	
BERIKOIRA	217	0	217	0.0	
BERKIAWEL	217	0	217	0.0	
					batterie, ampoule à
BIRNI N'KONNI	225	225	0	100.0	mercure
BOLOLADIE	222	50	172	22.5	batterie
BOUBON GOLF	224	0	224	0.0	
DAREY	223	41	182	18.4	batterie
DEBEREGATI	226	0	226	0.0	
FANDOU BERI	222	0	222	0.0	
GAMONZON	232	0	232	0.0	
GARDAMA					
KOUARA	231	0	231	0.0	
GOROU					
GOUSSA	231	55	176	23.8	batterie
GUILAHEL	227	54	173	23.8	batterie
HARIKANASSOU	232	0	232	0.0	
IH JACHERE	227	0	227	0.0	
KAFINA	225	0	225	0.0	
KALASSI	222	0	222	0.0	
KALIGOROU	233	0	233	0.0	
KARE	227	0	227	0.0	
KOKORBE					
FANDOU	240	0	240	0.0	
KOLLO	234	0	234	0.0	
KOURE					
KOBADE	240	0	240	0.0	
KOURE SUD	240	0	240	0.0	
KOYRIA	224	0	224	0.0	
MARADI	226	84	142	37.2	batterie
MASSIKOUBOU	225	0	225	0.0	
NIAMEY					
AEROPORT	230	0	230	0.0	
NIAMEY IRI	230	0	230	0.0	
NIAMEY					
ORSTOM	252	1	251	0.4	augets bloqués
SANDIDEY	232	0	232	0.0	- ,
TAHOUA	226	226	0	100.0	batterie
TANABERI	234	0	234	0.0	
TILLABERI	224	93	131	41.5	ampoule à mercure
TORODI	222	0	222	0.0	
WANKAMA	223	8	215	3.6	
YILLADE	240	0	240	0.0	
ZINDER	225	85	140	37.8	batterie

B. Jours de fonctionnement et pannes

les réinstallations ont commencé le 18/03/02 (Kollo) le démontage s'est terminé le 22/11/02 (Kokorbe Fandou)

stations du degré

carré

JOURS DE FONCTIONNEMENT	7559
JOURS DE PANNE	209
JOURS D'ENREGISTREMENT	7350
soit un taux de pannes de :	2.76%

ensemble des pluviographes

JOURS DE FONCTIONNEMENT	8685	
JOURS DE PANNE	922	
JOURS D'ENREGISTREMENT	7763	
soit un taux de pannes de :	10.62%	

Causes des pannes

Tillaberi: mauvais contact du fil de l'ampoule à mercure

Niamey Orstom: augets bloqués par une mauvaise évacuation de

l'eau

Bololadié, Darey; Gorou-Goussa, Guilahel, Konni, Maradi, Tahoua et Zinder:

batteries défaillantes

C. Coût de fonctionnement de la campagne 2002

Chapitre 690

* petit matériel (ré-installation-ins	stallation -entretien)		259 000	cfa
*bureautique	photocopie, papete disquettes, télépho nouveau PC		184 064 1 083 000	
*carburant			1 505 000	cfa
*kilométrage			1 755 000	cfa
*péages			50 000	cfa
*gardiennage des stations			1 631 000	cfa
*déplacement du	personnel local		885 000	cfa
		TOTAL	7 352 064	cfa
Chapitre 644				
salaires technicie	ns		1 460 000	cfa

Au cours de la saison 2002, les équipes de terrain ont effectué 105 jours de tournée pour les réinstallations, les visites de contrôle et d'entretien, le démontage des stations du degré carré. On doit ajouter les déplacements effectués sur les stations hors degré carré, pour obtenir un total d'environ 30 000 km

D. Tableau des cumuls journaliers aux stations de Banizoumbou, Alkama, Torodi, Niamey IRD, Niamey aéroport, Koryia, KoureKobade

Pluies journalieres (de 6 h a 6 h) en 1/10 mm avec correction par les donnees au SEAU

Station : Banizoumbou en 2002

Jour	Jan	Fev	Mars	Avr	Mai	Juin	Juil	Aout	Sept	Oct	Nov	Dec
. 1 .							25.					
								· ·				
					•	220.	•	•	9.	•		
4 .					•	20.	•	•	٠.	•		
5 .					•	20.		35.	•	•		
6.					•	•	25.	40.	209.	129.		
7 .					•	•				5.		
					•	•			213.	٦.		•
					•		5.	5.	213.			
		•	•		•	1 17	٥.	٥.				•
.10 .					•	147.	•	•		•		
.11 .					•	49.		•		•		
.12 .									14.			
.13 .						299.		154.	•			
14 .						60.	10.	505.		102.		
15 .						10.						
16.								9.		5.		
17 .								5.	266.			
18 .					15.							
19 .												
20 .						5.	70.	24.				
21 .							20.					
22 .												
23 .					20.			14.				
.24 .									194.			
. 25 .								128.	5.			
26 .								38.				
27 .					•							
28 .					•	15.	65.	247.	•	•		
.29 .					•	10.		76.	27.	•		
30 .		. ^ ^ ^ ^ ^			•	•	569.	,	۷,	•		
31 .		*			•		75.	•	^^^^			
·			·					<u>·</u>		<u>·</u>		
Cum.		•			35.	825.	864.	1280.	937.	241.		
Max.					20.	299.	569.	505.	266.	129.		

Total sur la periode de fonctionnement = 4182

Station: Alkama en 2002

=====												
Jour	Jan	Fev	Mars	Avr	Mai	Juin	Juil	Aout	Sept	Oct	Nov	Dec
. 1 .								126.				
. 2 .												
. 3 .						30.						
. 4 .												
. 5 .								10.		35.		
. 6 .								45.	160.	180.		
. 7 .									30.	105.		
. 8 .									260.			
. 9 .							126.					
.10 .						15.						
.11 .								· ·				
.12 .							•	•	15.			
.13 .				•		243.	•	226.	10.	40.		
.14 .				•		20.		121.		65.		
.15 .				•		20.	65.	121.				:
.16 .				•			05.	25.	16.			
.17 .				•		56.	•		119.	•		
.18 .				•	40.			•	119.			
.10 .				•	. 40.			•				
				•		•	80.	•				
.20 .				•			20.		•			
.21 .				•								
.22 .				•		•	•					
.23 .				•	. 15.			96.				
									185.			
								111.				
							25.					
						5.	10.	55.				
.29 .		. ^ ^ ^ ^ ^						126.	45.			
.30 .		. ^ ^ ^ ^ ^					598.					
.31 .		.^^^^		.^^^^		^^^^^	30.		^^^^		^^^^	
.Cum.					. 55.	369.	954.	941.	830.	425.		
.Max.				•	40.	243.	598.	226.	260.	180.		

Total sur la periode de fonctionnement = 3574

Station : Torodi en 2002

Jour	Jan	Fev	Mars	Avr	Mai	Juin	Juil	Aout	Sept	Oct	Nov	Dec
1.								5.		126.		
2.										30.		
3.						10.	35.		35.			
4 .						278.	25.			106.		
5.						5.						
6.							123.		109.	50.		
7.										10.		
8.									336.			
9.												
10 .							5.					
11 .						40.	25.					
12 .								292.	193.			
13 .						105.						
14 .						376.		311.				
15 .						74.	10.			5.		
16 .												
17 .								5.	153.			
18 .					. 15.				5.			
19 .									35.			
20.							518.	143.				
21 .							138.					
22 .						123.						
23 .					. 149.			15.				
24 .									186.			
25 .								79.	5.			
26 .							44.	212.				
27 .							5.					
28 .						187.	20.	277.				
29 .		. ^ ^ ^ ^ ^						94.	15.			
30 .		. ^ ^ ^ ^ ^					394.					
31 .		. ^ ^ ^ ^ ^		.^^^^		^^^^	84.		^^^^		^^^^	^
Cum.					. 164.	1198.	1426.	1433.	1072.	327.		
 Max.					. 149.	376.	518.	311.	336.	126.		

Total sur la periode de fonctionnement = 5620

Station : Niamey ORSTOM en 2002

Jour	Jan	Fev	Mars	Avr	Mai	Juin	Juil	Aout	Sept	Oct	Nov	Dec
1.										501.		
2.					. 9.	45.				6.		
3.						54.				6.		
4.						15.	15.					
5.				. 4						31.		
6.									204.	112.		
7.										5.		
									74.			
				•		30.	129.	•	6.	•		
10 .				•				•	•	•		
11 .				•		124.	•	•	•	•		
				•			•	•	204.	•		
				•		403.	•	•	204.			
				•	. 10.			686.		163.		
		-	•	•	. 10.	11/.	•	000.				•
			•	•		•	•	•	•	5.		
			•	•		٠.			100			
17 .				•		5.	•	5.	130.	•		
			•	•		•	•					
			•	•			10.					
20 .							60.	31.				
21 .												
22 .						153.						
23 .					. 25.			19.				
24 .									365.			
25 .								587.	6.			
26 .							60.					
27 .					. 15.		40.					
28 .						5.	70.	253.				
29 .		. ^ ^ ^ ^ ^						80.				
30 .		. ^ ^ ^ ^ ^					268.					
31 .		.^^^^		.^^^^		^^^^	25.		^^^^		^^^^	^
Cum.				. 4	. 59.	951.	677.	1661.	989.	829.		
Max.				. 4	. 25.	403.	268.	 686.	365.	501.		

Total sur la periode de fonctionnement = 5170

Station : Niamey Aeroport en 2002

our	Jan	Fev	Mars	Avr	Mai	Juin	Juil	Aout	Sept	Oct	Nov	Dec
1 .										48.		
2.						70.						
3.						10.						
4.						20.	29.			10.		
5.				. 19.		5.				48.		
6.									106.	135.		
7 .												
									73.			
						140.	82.					
10 .				•	·	5.						
11 .					•	75.	•	•		•		
					•	, ,	•	•	58.			
					•	394.	•	•	50.	•		
			•		•	91.	•	428.	•	24.		
			•		•	21.	5.		•			
		-	•		•		٥.	•				
			•			•	•	1.0	101	•		
			•					19.	121.			
			•		5.		•	•				
			•						15.			
							168.	82.				
21 .												
22 .						34.		145.				
23 .					85.			48.				
24.									169.			
25 .								121.				
26.							130.	29.				
27 .												
28 .						193.	188.	140.				
29 .		. ^ ^ ^ ^ ^						34.	184.			
		. ^ ^ ^ ^ ^					555.					
31 .		.^^^^		.^^^^		^^^^	57.		^^^^	:	^^^^	
Cum.				. 19.	90.	1037.	1214.	1046.	726.	280.		
 Max.				. 19.	85.	394.	555 .	428.	184.	 135.		

Total sur la periode de fonctionnement = 4412

Station : Koyria en 2002

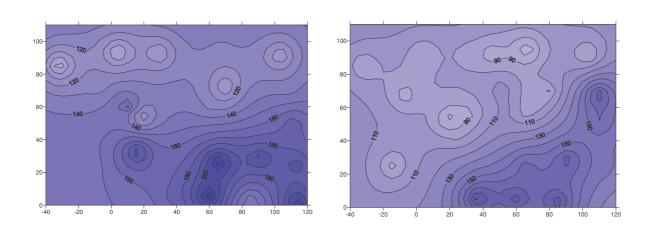
our	Jan	Fev	Mars	Avr	Mai	Juin	Juil	Aout	Sept	Oct	Nov	Dec
1.										153.		
2.						97.	56.			57.		
3.					30.	336.						
4 .										10.		
5 .				. 17.								
									141.			
								· ·	5.			
					•	•	•	•	185.			·
					•	•	10.	15.				·
10 .					•		10.	10.				·
11 .				. 73.	•	325.	•	•	15.			·
12 .				. /3.	•		•	•	34.	•		
13 .					•	153.			34.			
14 .					•		•	200	•	•		
					•	127.	•	308.		•		
					•							
					•			114.				
17 .						36.		35.	29.			
18 .					25.				5.			
19 .							74.	10.				
20 .							159.					
21 .												
22 .												
23 .												
24 .						208.			200.			
25 .								154.				
26 .							174.		5.			
							5.					
						107.	209.	70.				
		. ^ ^ ^ ^ ^			41.			40.	244.			
		. ^ ^ ^ ^ ^		•		•	74.			•		
31 .		. ^ ^ ^ ^ ^	•		•	^^^^^	10.	•	^^^^		^^^^	•
		· 	· 	·	·			<u>·</u>	<u>·</u>	<u>·</u>		·
Cum.		•	•	. 90.	96.	1389.	771.	746.	863.	279.		
 Мах.				. 73.	41.	336.	209.	308.	244.	153.		

Total sur la periode de fonctionnement = 4234

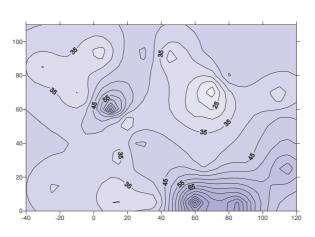
Station : Koure Kobade en 2002


our	Jan	Fev	Mars	Avr		Mai	Juin	Juil	Aout	Sept	Oct	Nov	Dec
1.								25.			278.		
2.													
3.						209.	270.	44.		137.	5.		
4.							75.	39.					
5.					5.		9.		573.		5.		
6.								10.	34.		39.		
7.										10.			
8.										346.			
9.										5.			
							693.						
						•	20.	78.	10.				
					·				10.	234.			
				•	•	•	•	•	•	201.	•		
				•	•	•	•	•	250.	:	122		
				•	•	•	138.	•	230.	•			
				•	•	•	5.	2.4	•	121.			
			•	•	•	•	٥.	34.	400	108.			
				•	•	•	•		480.				
				•	•	•	•						
				•	٠	•	•	44.	5.	44.			
			•	•	•	•		39.	176.				
			•	•	•	•	20.	78.	•	•	•		
					•		334.						
						59.			167.				
										195.			
25 .								15.		5.			
26.									304.				
27 .							34.						
28 .								5.	176.				
29 .		. ^ ^ ^ ^ ^							118.				
30 .		. ^ ^ ^ ^ ^						490.	5.				
		.^^^^		.^^^^	^^.		^^^^	64.		^^^^		^^^^	
cum.			•		5.	268.	1598.	965.	2298.	1273.	454.		
 Max.					 5.	209.	693.	490.	573.	346.	 278.		

Total sur la periode de fonctionnement = 6861


E. Cumuls mensuels enregistrés aux 38 stations du réseau (cône de réception 1,50m au dessus du sol), pour les mois d'avril à octobre 2002

Alkama 0 5.5 36.9 95.4 94.1 83 ————————————————————————————————————		avril	mai	juin	juillet	août	septembre	octobre
Beri Koira 1.4 7.6 88.9 99.4 129.1 116	Alkama	0	5.5	36.9	95.4	94.1	83	
Berkiawal 4.6 5.9 98.4 116 136.5 85.1	Banizoumbou		3.5	82.5	86.4	128	93.7	24.1
Bololadie 39.9	Beri Koira	1.4	7.6	88.9	99.4	129.1	116	
Boubon Golf	Berkiawal	4.6	5.9	98.4	116	136.5	85.1	
Darey	Bololadie	39.9			107.5	141.4	83.4	
Debere Gati 0.7 17.9 101.3 156.2 154.6 125 26.9 Fandou Beri	Boubon Golf		11.9	163.6	110.7	128.4	80.5	
Fandou Beri	Darey		11.2	71.5	88.8	125.2		
Gamonzon 17 15.6 75.8 167.9 177.9 163.9 49.9 Gardama Kouara 2.8 0 158.2 94.2 93.3 93.7	Debere Gati	0.7	17.9	101.3	156.2	154.6	125	26.9
Gardama Kouara 2.8 0 158.2 94.2 93.3 93.7	Fandou Beri		2	139.9	134.1	127.3	108	25.2
Gorou Goussa 0 6 183.4 87.2 80.5 86	Gamonzon	17	15.6	75.8	167.9	177.9	163.9	49.9
Guilahel 7 1	Gardama Kouara	2.8	0	158.2	94.2	93.3	93.7	
Harrikanassou 21.5 8.3 85.7 192.2 206.6 180.3 44 IH Jachere.hapex1 0.4 24.2 106.2 115.7 167.6 125.6 42.8 Niamey IRI 1.3 8.1 138 109.5 141.8 97.5	Gorou Goussa	0	6	183.4	87.2	80.5	86	
IH Jachere.hapex1 0.4 24.2 106.2 115.7 167.6 125.6 42.8 Niamey IRI 1.3 8.1 138 109.5 141.8 97.5	Guilahel	7	1				114	32.5
Niamey IRI 1.3 8.1 138 109.5 141.8 97.5	Harikanassou	21.5	8.3	85.7	192.2	206.6	180.3	44
Kafina 0.4 3.6 49.3 73.7 119 108.7 46 Kalassi 1.5 3 119.6 171.3 130.2 87.6 29.8 Kaligorou 0 9.5 34.2 103.4 137.4 184.3	IH Jachere.hapex1	0.4	24.2	106.2	115.7	167.6	125.6	42.8
Kalassi 1.5 3 119.6 171.3 130.2 87.6 29.8 Kaligorou 0 9.5 34.2 103.4 137.4 184.3	Niamey IRI	1.3	8.1	138	109.5	141.8	97.5	
Kaligorou 0 9.5 34.2 103.4 137.4 184.3	Kafina	0.4	3.6	49.3	73.7	119	108.7	46
Kare	Kalassi	1.5	3	119.6	171.3	130.2	87.6	29.8
Kokorbe Fandou 10.6 2.4 79 144.3 123 67.3 41.4 Kollo 0.3 3.5 84.4 106.5 153.7 97.6	Kaligorou	0	9.5	34.2	103.4	137.4	184.3	
Kollo 0.3 3.5 84.4 106.5 153.7 97.6	Kare			82.5	203.8	174.7	202.4	30.4
Birni n konni	Kokorbe Fandou	10.6	2.4	79	144.3	123	67.3	41.4
Koure Kobade 0.5 26.8 159.8 96.5 229.8 127.3	Kollo	0.3	3.5	84.4	106.5	153.7	97.6	
Koure Sud 0 17 62.7 165.4 230.1 165.9	Birni n konni		0					
Koyria 9 9.6 138.9 77.1 74.6 86.3	Koure Kobade	0.5	26.8	159.8	96.5	229.8	127.3	
Maradi	Koure Sud	0	17	62.7	165.4	230.1	165.9	
Massi Koubou	Koyria	9	9.6	138.9	77.1	74.6	86.3	
Niamey Aeroport 1.9 9 103.7 121.4 104.6 72.6	Maradi				99.8	205.6	78.5	22
Niamey ORSTOM 0.4 5.9 95.1 67.7 166.1 98.9 82.9 Sandideye 2.2 9.8 81.7 113.9 198.2 147.7 66 Tahoua	Massi Koubou			155.7	112.4	125.9	79.7	25.3
Sandideye 2.2 9.8 81.7 113.9 198.2 147.7 66 Tahoua	Niamey Aeroport	1.9	9	103.7	121.4	104.6	72.6	
Tahoua	Niamey ORSTOM	0.4	5.9	95.1	67.7	166.1	98.9	82.9
Tanaberi	Sandideye	2.2	9.8	81.7	113.9	198.2	147.7	66
Tilaberi 1.2 1.2 52.3 47.2 108.6 76.1	Tahoua		0					
Torodi	Tanaberi		29.4	100	260	233.9	189.4	
Wankama 0.5 2.4 51.5 89.7 93.7 91.3 12.9 Yiladde 3.1 5.2 108.4 177.5 137 194.2	Tilaberi	1.2	1.2	52.3	47.2	108.6	76.1	
Yiladde 3.1 5.2 108.4 177.5 137 194.2	Torodi			119.8	142.6	143.3	107.2	
	Wankama	0.5	2.4	51.5	89.7	93.7	91.3	12.9
Zinder 90 92 54 16.8	Yiladde	3.1	5.2	108.4	177.5	137	194.2	
	Zinder				90	92	54	16.8


F. Cartes mensuelles d'isohyètes obtenues par krigeage des 33 stations du réseau (cône de réception 1,50m au dessus du sol), pour les mois de mai à octobre 2002

octobre

G. Liste des fichiers créés lors du traitement des données pluviographiques

Liste des fichiers .lab

ALKAMA1.LAB	GAMONZO2.LAB	KALASSI5.LAB	ORSTOM3.LAB
ALKAMA2.LAB	GAMONZO3.LAB	KALIGOR1.LAB	ORSTOM4.LAB
ALKAMA3.LAB	GAMONZO4.LAB	KALIGOR2.LAB	ORSTOM5.LAB
ALKAMA4.LAB	GAMONZO5.LAB	KALIGOR3.LAB	SANDIDE1.LAB
BANIZOU1.LAB	GARDAMA1.LAB	KALIGOR4.LAB	SANDIDE2.LAB
BANIZOU2.LAB	GARDAMA2.LAB	KARE1.LAB	SANDIDE3.LAB
BANIZOU3.LAB	GARDAMA3.LAB	KARE2.LAB	SANDIDE4.LAB
BANIZOU4.LAB	GARDAMA4.LAB	KARE3.LAB	SANDIDE5.LAB
BERIKOI1.LAB	GOROUGO1.LAB	KARE4.LAB	TANABER1.LAB
BERIKOI2.LAB	GOROUGO2.LAB	KOKORBE1.LAB	TANABER2.LAB
BERIKOI3.LAB	GOROUGO3.LAB	KOKORBE2.LAB	TANABER3.LAB
BERIKOI4.LAB	GOROUGO4.LAB	KOKORBE3.LAB	TORODI1.LAB
BERKIAW1.LAB	GUILAHE1.LAB	KOKORBE4.LAB	TORODI2.LAB
BERKIAW2.LAB	GUILAHE2.LAB	KOLLO1.LAB	TORODI3.LAB
BERKIAW3.LAB	GUILAHE3.ERR	KOLLO2.LAB	TORODI4.LAB
BERKIAW4.LAB	GUILAHE4.LAB	KOLLO3.LAB	WANKAMA1.LAB
BOLOLAD1.LAB	GUILAHE5.LAB	KOLLO4.LAB	WANKAMA2.LAB
BOLOLAD2.ERR	HARIKAN1.LAB	KOUREKO1.LAB	WANKAMA3.LAB
BOLOLAD3.LAB	HARIKAN2.LAB	KOUREKO2.LAB	WANKAMA4.LAB
BOLOLAD4.LAB	HARIKAN3.LAB	KOUREKO3.LAB	WANKAMA5.LAB
BOLOLAD5.LAB	HARIKAN4.LAB	KOUREKO4.LAB	YILLADE1.LAB
BOUBON1.LAB	HARIKAN5.LAB	KOURESU1.LAB	YILLADE2.LAB
BOUBON2.LAB	IHJACHE1.LAB	KOURESU2.LAB	YILLADE3.LAB
BOUBON3.LAB	IHJACHE2.LAB	KOURESU3.LAB	YILLADE4.LAB
BOUBON4.LAB	IHJACHE3.LAB	KOURESU4.LAB	KONNI1.LAB
DAREY2.LAB	IHJACHE4.LAB	KOYRIA1.LAB	KONNI2.ERR
DAREY3.LAB	IHJACHE5.LAB	KOYRIA2.LAB	MARADI1.ERR
DAREY4.LAB	IRI1.LAB	KOYRIA3.LAB	MARADI2.LAB
DAREY5.ERR	IRI2.LAB	KOYRIA4.LAB	TAHOUA1.LAB
DAREY6.LAB	IRI3.LAB	MASSIKO1.LAB	TAHOUA2.LAB
DEBEREG1.LAB	IRI4.LAB	MASSIKO2.LAB	TILLABE1.LAB
DEBEREG2.LAB	KAFINA1.LAB	MASSIKO3.LAB	TILLABE2.LAB
DEBEREG3.LAB	KAFINA2.LAB	MASSIKO4.LAB	TILLABE3.LAB
DEBEREG4.LAB	KAFINA3.LAB	NIAMEYA1.LAB	TILLABE4.LAB
DEBEREG5.LAB	KAFINA4.LAB	NIAMEYA2.LAB	TILLABE5.LAB
FANDOUB1.LAB	KALASSI1.LAB	NIAMEYA3.LAB	ZINDER2.LAB
FANDOUB2.LAB	KALASSI2.LAB	NIAMEYA4.LAB	
FANDOUB3.LAB	KALASSI3.LAB	ORSTOM1.LAB	
GAMONZO1.LAB	KALASSI4.LAB	ORSTOM2.LAB	

Liste des fichiers.oe3

ALKAMA1.OE3	GAMONZO1.OE3	KALASSI4.OE3	NIAMEYA1.OE3
ALKAMA2.OE3	GAMONZO2.OE3	KALASSI5.OE3	NIAMEYA2.OE3
ALKAMA3.OE3	GAMONZO3.OE3	KALIGOR1.OE3	NIAMEYA3.OE3
ALKAMA4.OE3	GAMONZO4.OE3	KALIGOR2.OE3	NIAMEYA4.OE3
BANIZOU1.OE3	GAMONZO5.OE3	KALIGOR3.OE3	ORSTOM1.OE3
BANIZOU2.OE3	GARDAMA1.OE3	KALIGOR4.OE3	ORSTOM2.OE3
BANIZOU3.OE3	GARDAMA2.OE3	KARE1.OE3	ORSTOM3.OE3
BANIZOU4.OE3	GARDAMA3.OE3	KARE2.OE3	ORSTOM4.OE3
BERIKOI1.OE3	GARDAMA4.OE3	KARE3.OE3	ORSTOM5.OE3
BERIKOI2.OE3	GOROUGO1.OE3	KARE4.OE3	SANDIDE1.0E3
BERIKOI3.OE3	GOROUGO2.OE3	KOKORBE1.OE3	SANDIDE2.OE3
BERIKOI4.OE3	GOROUGO3.OE3	KOKORBE2.OE3	SANDIDE3.0E3
BERKIAW1.OE3	GOROUGO4.OE3	KOKORBE3.OE3	SANDIDE4.OE3
BERKIAW2.OE3	GUILAHE1.OE3	KOKORBE4.OE3	SANDIDE5.OE3
BERKIAW3.OE3	GUILAHE2.OE3	KOLLO1.OE3	TAHOUA1.OE3
BERKIAW4.OE3	GUILAHE3.OE3	KOLLO2.OE3	TAHOUA2.OE3
BOLOLAD1.OE3	GUILAHE4.OE3	KOLLO3.OE3	TANABER1.OE3
BOLOLAD2.OE3	GUILAHE5.OE3	KOLLO4.OE3	TANABER2.OE3
BOLOLAD3.OE3	HARIKAN1.OE3	KONNI1.OE3	TANABER3.0E3
BOLOLAD4.OE3	HARIKAN2.OE3	KONNI2.OE3	TILLABE1.OE3
BOLOLAD5.OE3	HARIKAN3.OE3	KOUREKO1.OE3	TILLABE2.OE3
BOUBON1.OE3	HARIKAN4.OE3	KOUREKO2.OE3	TILLABE3.OE3
BOUBON2.OE3	HARIKAN5.OE3	KOUREKO3.OE3	TILLABE4.OE3
BOUBON3.OE3	IHJACHE1.OE3	KOUREKO4.OE3	TILLABE5.OE3
BOUBON4.OE3	IHJACHE2.OE3	KOURESU1.OE3	TORODI1.OE3
DAREY1.OE3	IHJACHE3.OE3	KOURESU2.OE3	TORODI2.OE3
DAREY2.OE3	IHJACHE4.OE3	KOURESU3.OE3	TORODI3.OE3
DAREY3.OE3	IHJACHE5.OE3	KOURESU4.OE3	TORODI4.OE3
DAREY4.OE3	IRI1.OE3	KOYRIA1.OE3	WANKAMA1.OE3
DAREY5.OE3	IRI2.OE3	KOYRIA2.OE3	WANKAMA2.OE3
DAREY6.OE3	IRI3.OE3	KOYRIA3.OE3	WANKAMA3.OE3
DEBEREG1.OE3	IRI4.OE3	KOYRIA4.OE3	WANKAMA4.OE3
DEBEREG2.OE3	KAFINA1.OE3	listeoe3.txt	WANKAMA5.OE3
DEBEREG3.OE3	KAFINA2.OE3	MARADI1.OE3	YILLADE1.OE3
DEBEREG4.OE3	KAFINA3.OE3	MARADI2.OE3	YILLADE2.OE3
DEBEREG5.OE3	KAFINA4.OE3	MASSIKO1.OE3	YILLADE3.OE3
FANDOUB1.OE3	KALASSI1.OE3	MASSIKO2.OE3	YILLADE4.OE3
FANDOUB2.OE3	KALASSI2.OE3	MASSIKO3.OE3	ZINDER1.OE3
FANDOUB3.OE3	KALASSI3.OE3	MASSIKO4.OE3	ZINDER2.OE3

Liste des fichiers .txt

alkama.txt	gardama.txt	kokorbe.txt	orstom.txt
banizou.txt	gorougo.txt	kollo.txt	sandide.txt
berikoi.txt	guilahe.txt	konni.txt	tahoua.txt
berkiaw.txt	harikan.txt	koureko.txt	tanaber.txt
bololad.txt	ihjache.txt	kouresu.txt	tillabe.txt
boubon.txt	iri.txt	koyria.txt	torodi.txt
darey.txt	kafina.txt	listetxt.txt	wankama.txt
debereg.txt	kalassi.txt	maradi.txt	yillade.txt
fandoub.txt	kaligor.txt	massiko.txt	zinder.txt
gamonzo.txt	kare.txt	niameya.txt	