

EPSAT-NIGER SUIVI A LONG TERME

CAMPAGNE 1998

Jean Denis TAUPIN et Joseph ROBIN

janvier 1999

DMN

ORSTOM

EPSAT-NIGER SUIVI A LONG TERME

CAMPAGNE 1998

Jean Denis TAUPIN et Joseph ROBIN

janvier 1999

ORSTOM

DMN

AVANT-PROPOS

Le dispositif du réseau pluviographique adopté en 1998 est identique à la configuration de la saison 1997, celle-ci devrait être maintenue au moins jusque en 1999 dans le cadre de l'étude des précipitations sur la zone du degré carré d'HAPEX-Sahel (Goutorbe et al., 1994). Un seul ingénieur de l'ORSTOM reste opérationnel dans le cadre de la formation des techniciens de la DMN (Direction de la Météorologie du Niger) à la maintenance du réseau ainsi qu'au traitement préliminaire des données.

Trente-six pluviographes ont été maintenus pour une maille de base d'environ 25 km pour assurer le suivi pluviométrique à long terme du degré carré, dans le cadre, on peut l'espérer, du choix du futur site de validation en zone sahélienne du satellite micro-ondes TRMM (Tropical rainfall Measurement Mission, **Simpson et al., 1988**) qui a été lancé fin 1997. Le site central reste encore opérationnel, pour quelques études complémentaires dans le cadre de SALT (Savane A Long Terme) et du suivi de la nappe du CT3.

Comme l'année précédente, le rapport se veut moins dense, il rappellera les grandes caractéristiques pluviométriques de la saison déjà étudiées dans les rapports précédents (Lebel et al., 1991 ; Taupin et al., 1992, 1993b, 1995a, 1995b, 1996 ; Taupin et Robin, 1997) mais l'analyse préliminaire sera plus succincte et seule la modélisation des variogrammes aux échelles saisonnière, mensuelle et décadaire fera l'objet d'une étude un peu plus détaillée.

Comme les années précédentes, un annuaire des pluies journalières enregistrées sur les 36 stations pourra être disponible auprès du centre ORSTOM de Niamey ou de Grenoble.

SOMMAIRE

1. Caractéristiques de	la saison des pluies 1998	1
2. Le réseau de pluvic	ographes	16
3. Analyses prélimina	ires des données pluviographiques	25
4. Conclusions		41
Références		42
Annexe 1	Gestion du réseau de pluviographes	A1.1
Annexe 2	Isohyètes des cumuls par épisodes	A2.1
Annexe 3	Tableaux des cumuls journaliers	A3.1
Annexe 4	Cumuls mensuels	A4.1
Annexe 5	Cumuls saisonniers sur le réseau nigérien	A5.1
Annexe 6	Fonctions de structure au pas de temps de l'événement, de la décade et du mois	A6.1
Annexe 7	Listes des fichiers crées lors du traitement des données pluviographiques	A7.1

CARACTERISTIQUES DE LA SAISON DES PLUIES 1998 SUR LA REGION DE NIAMEY

1

Après une année très déficitaire en 1997, la saison 1998, sur le Niger et sur le degré carré a été fortement excédentaire par comparaison à la période de sécheresse qui sévit depuis la fin des années 60. Les premières pluies sont arrivées normalement aux environs de la mi-avril, souvent très localisées et peu nombreuses. Au mois de mai, l'installation du flux de mousson se fait très progressivement sur la zone d'EPSAT-Niger et on note en moyenne 4 événements par station. A partir du mois de juin, la saison des pluies est bien installée sur l'ensemble de la zone et les événements sur les mois de juin, juillet et août vont progressivement être plus importants en nombre et en cumul. Par rapport à la moyenne sur la période 1950-89 à la station de Niamey Aéroport pris comme station de référence sur la zone du degré carrée, la pluviométrie de ces trois mois apparaît normale. Le mois de septembre est par contre très excédentaire par comparaison à la période 1950-89 d'environ 60 %. A partir de fin septembre le flux de mousson redescend brusquement, et le mois d'octobre est presque totalement sec sur la zone d'étude, 23 stations ont reçu au plus 1 mm de pluie et la moyenne sur la zone est de 2,1 mm. Mais le phénomène le plus marquant de cette année est le nombre anormalement important d'événements supérieurs à 100 mm que l'on a recensé et qui se situent pour la plupart dans la région la plus proche de Niamey, ce qui a causé d'ailleurs des inondations à répétition à Niamey même. Un autre record a aussi été enregistré cette année, sur les deux stations situées au centre de Niamey, on a mesuré les valeurs les plus extrêmes depuis les premières mesures effectuées en 1905 dans la ville de Niamey , soit 978,1 à Niamey Orstom (n° 70) et 1043,9 mm à Niamey IRI (n° 83). Depuis 1905 à Niamey, sur 3 années seulement, 1 événement avait dépassé le seuil des 900 mm, en 1909 (939 mm), en 1927 (903 mm) et en 1952 (939 mm), figure 1. Par comparaison aux valeurs de la période sèche enregistrées depuis 1968 à Niamey, on note une différence de 293 et 359 mm avec la valeur la plus élevée acquise en 1978 (685 mm).

La moyenne arithmétique sur l'ensemble des stations sur la période de référence (15 avril-15 octobre) est égale à 664,9 mm, du même ordre de grandeur que celle relevée durant la saison 1994.

1.1 Distribution spatiale des cumuls saisonniers

La saison 1998 (période de référence choisie 15 avril-15 octobre), avec une moyenne estimée par krigeage de 659,2 mm, et un écart-type de 136,0 mm est la seconde année excédentaire de la période 1990-98 après celle de 1994 (663 mm). Cette moyenne est supérieure à la moyenne de la période sèche 1968-89 d'environ 200 mm et supérieure de 100 mm sur la période 1950-89 (station de référence Niamey Aéroport).

La variabilité spatiale sur la zone est la plus forte enregistrée depuis le début de l'expérimentation EPSAT-Niger, on note un rapport de près de 2,6 entre la valeur la plus basse, 401,9 mm (Kafina, n° 413) et la valeur la plus haute, 1043,9 mm (Niamey IRI, n° 83)

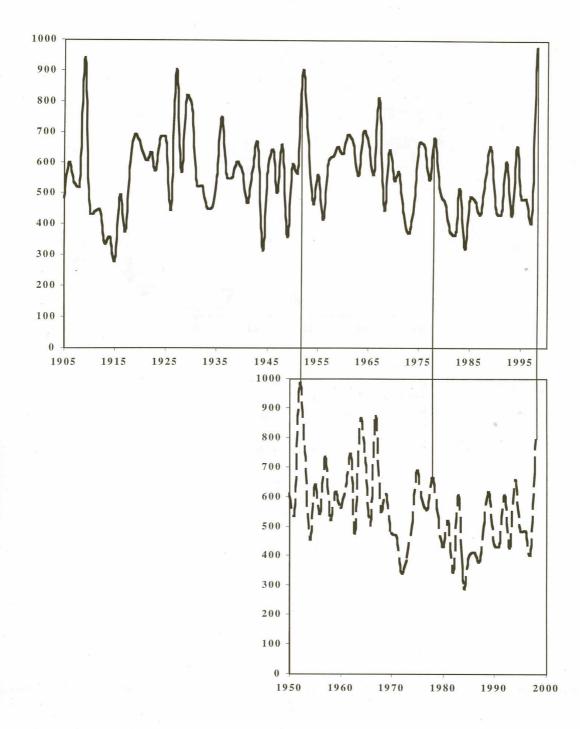
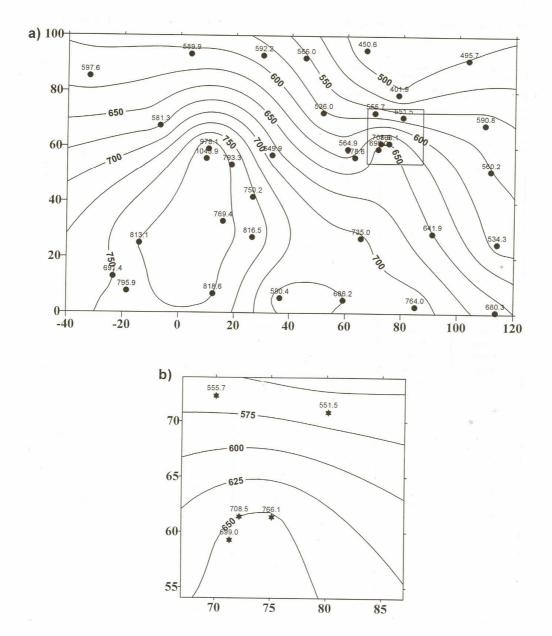
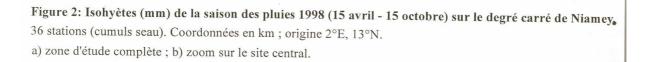




Figure 1: Cumul saisonnier à la station de Niamey ville (1905-98) et Niamey Aéroport (1950-98).

Station	n°Epsat	date	date	cumul seau	cumul seau
		installation	démontage	période totale	15/04-15/10
Alkama	43	12/04	10/10	105.7	
		13/04	19/10	495,7	495,7
Banizoumbou	11	permanent	permanent	699,0	- 699,0
Bazanga	5	06/04	21/10	578,6	578,6
Beri Koira	21	15/04	19/10	536,0	536,0
Berkiawel	28	17/04	19/10	649,9	649,9
Bogdjottou	412	02/04	27/10	795,9	795,9
Bololadie	84	02/04	27/10	819,4	813,1
Boubon	85	04/04	20/10	581,3	581,3
Darey	18	14/04	20/10	551,5	551,5
Debere Gati	25	01/04	26/10	818,6	818,6
Fandou Beri	9	permanent	permanent	564,9	564,9
Gamonzon	34	11/04	22/10	560,7	560,2
Gardama	50	16/04	22/10	592,2	592,2
Gorou Goussa	80	16/04	22/10	589,9	589,9
Guilahel	49	01/04	26/10	769,4	769,4
Hama Jachere	411	06/04	21/10	766,1	766,1
Harikanassou	41	11/04	22/10	641,9	641,9
IH Jachere	105	03/04	26/10	816,5	816,5
Kafina	413	26/03	19/10	401,9	401,9
Kaligorou	61	13/04	19/10	590,8	590,8
Kangorou	01	15/04	19/10	390,8	590,8
Kare	29	01/04	26/10	590,9	590,4
Kokorbe Fandou	73	14/04	20/10	451,1	450,6
Kollo	54	permanent	permanent	761,4	750,2
Koure Kobade	26	07/04	21/10	680,3	680,3
Koure Sud	51	07/04	21/10	735,0	735,0
Koyria	82	04/04	20/10	597,6	597,6
Mali Djibo	269	06/04	21/10	708,5	708,5
Massi Koubou	78	15/04	19/10	566,0	566,0
Niamey Aeroport	94	permanent	permanent	793,3	793.3
Niamey IRI	83	permanent	permanent	1043,9	1043,9
Niamey Orstom	70	permanent	permanent	978,1	978,1
Sandideye	57	11/04	22/10	534,3	534,3
Tanaberi	32	05/04	23/10	686,2	686,2
Torodi	86	02/04	27/10	691,4	691,4
Wankama	116	permanent	permanent	555,7	555.7
Yillade	35	07/04	21/10	765,5	5
1 made		07/04	21/10	/03,3	764,0

 Tableau 1: Cumuls mesurés sur la période de fonctionnement et sur la période 15 avril - 15 octobre.

Tableau 2: Liste des 44 événements majeurs enregistrés en 1998 à partir de 36 stations. Un événement majeur est comptabilisé dés lors que 30% (P) au moins des stations en fonctionnement (N) enregistrent une quantité de pluie supérieure à 1 mm. Les cumuls T sont exprimés en 1/10 mm ainsi que les quantités maximales de pluies enregistrées pendant l'événement en 5, 10, 15, 30, 60 minutes. Les nombres de taille réduites correspondent aux stations où l'on a relevé l'intensité maximale à un pas de temps donné pendant l'événement. i, j correspondent respectivement à la première et à la dernière station touchée. Le temps de passage de l'événement sur le degré carré est donné en minutes. La moyenne pluviométrique krigée par événement, sur le degré carré, est donnée en millimètre.

No	debut	fin	Ν	Р	i	j	5	10	15	30	60	T.	Duree	moy. k
1	2014 - (102)	20/4 111 0	24	(2.0	0.4	20	07			_				
1	30/4 a 6h25'	30/ 4 a 11h 0'	36	63.9	84	29	97	188	274	480	650	685	280	8,2
2	4/ 5 a 21h 5'	115 . 226251	26	26 1	20	0 4	411	41	41	41	41	41	1.15	2.0
2	4/ 5 a 2111 5	4/ 5 a 23h25'	36	36.1	32	84	63	89	117	170	175	175	145	3,0
3	16/ 5 a 22h30'	17/5 a 4h50'	35	94.3	35	86	32 68	32 133	32 192	32	32	32	205	7.6
5	10/ 5 a 221150	1775 a 41150	55	94.3	55	00	25	25	25	309 25	355 25	430	385	7,6
4	28/5 a 0h 0'	28/5 a 3h35'	36	83.3	51	84	72	130	171	238	312	25 325	220	0.6
4	20/5 a 0110	20/ J a 51155	50	05.5	51	04	21	28	54	238 54	54	525 54	220	9,6
5	2/6a7h0'	2/6 a 9h10'	36	75	32	32	63	101	130	165	157	210	135	3,0
2	2/04 /110	2/0 a 9110	50	15	54	54	32	32	32	32	32	32	155	5,0
6	5/6 a 6h30'	5/6 a 8h40'	36	33.3	34	105	46	89	110	133	145	145	135	2,1
0	5/ 6 4 61150	57 6 4 61110	50	00.0	24	105	11	11	11	5	5	5	155	2,1
7	8/6 a 14h35'	8/6 a 20h55'	36	91.7	35	82	146	232	300	471	520	520	385	17,8
,	5, 5 4 1 11 5 5	0. 0 4 20100	50	>1.1	55	54	116	116	78	78	78	78	505	17,0
8	16/6 a 0h20'	16/6a 5h20'	36	86.1	26	412	80	136	170	241	270	300	305	11,1
0	10/04/01/20	10/04/01/20	50	00.1	20	112	29	105	105	105	105	105	505	11,1
9	20/ 6 a 21h25'	21/6 a 1h50'	36	77.8	269	86	58	110	135	165	170	190	270	6,9
1	207 0 4 211120	211 0 4 11100	00	77.0	200	00	105	41	41	41	41	29	270	0,9
10	25/6 a 3h40'	25/6 a 6h40'	36	38.9	43	28	71	142	181	260	280	280	185	8,2
						77	34	34	34	34	34	34	100	0,2
11	25/6 a 6h50'	25/6 a 8h35'	36	44.4	78	50	49	98	122	165	205	210	110	2,9
							50	50	50	50	50	50		-,-
12	30/ 6 a 22h15'	1/7 a 5h10'	34	100	57	412	125	236	309	482	580	650	420	30,0
							94	94	54	54	51	51		
13	9/7 a 4h 5'	9/7 a 7h40'	33	48.5	78	82	131	247	353	531	550	550	220	6,0
							412	412	412	412	412	412		
14	12/ 7 a 15h40'	12/ 7 a 21h10'	34	58.8	9	82	107	209	302	556	640	690	335	9,3
							411	18	18	18	18	82		
15	17/ 7 a 21h35'	17/ 7 a 22h35'	34	32.4	43	116	61	71	80	80	85	85	65	1,3
							25	25	25	43	25	25		
16	17/ 7 a 22h40'	18/7 a 2h40'	34	61.8	51	29	93	179	223	273	275	275	245	4,9
							26	26	26	26	26	26		
17	20/7 a 3h20'	20/7 a 6h45'	34	50	78	86	129	242	339	620	762	765	210	9,8
							412	412	412	412	412	412		
18	20/ 7 a 19h40'	21/7 a 1h25'	34	94.1	73	80	95	171	226	320	367	435	350	20,5
							73	28	73	80	73	80		
19	23/7 a 0h30'	23/7 a 6h 5'	34	100	57	82	114	220	318	566	635	675	340	19,4
							43	43	43	43	43	43		
20	26/7 a 6h50'	26/ 7 a 10h20'	35	31.4	70	84	41	80	108	194	300	350	215	3,0
0							84	84	84	84	84	84		
21	28/7 a 9h10'	28/ 7 a 16h20'	35	100	41	82	120	227	318	433	450	615	435	27,9
							49	49	49	49	49	51		
22	1/8 a 1h45'	1/ 8 a 11h40'	35	100	18	82	94	186	243	412	618	1235	600	49,5
				1100110-000		02020	28	28	28	35	35	70		
23	3/8 a 7h15'	3/ 8 a 13h50'	35	94.3	41	82	221	428	604	1007	1118	1150	400	34,9
							25	25	25	25	25	25		

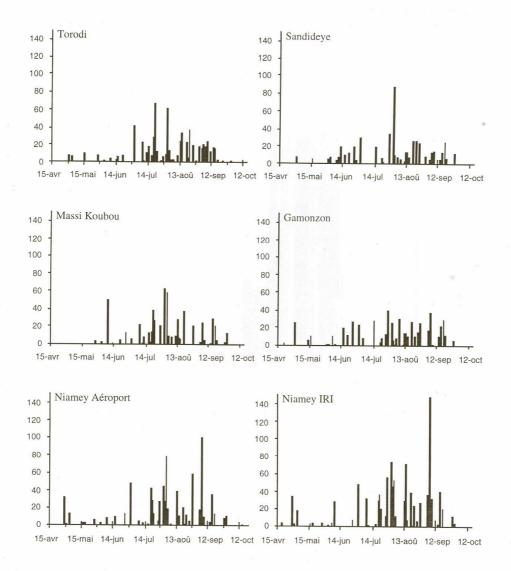
	Maxima	Maximorum	sur	5 mi	1 :	22.1								
			2.0	, , . 0	1.5	00	18	18	18	49	18	18	140	5,2
4	27/ 9 a 20h55'	27/ 9 a 23h10'	36	77.8	43	85	79	123	146	181	185	185	140	5,2
	201 9 4 2011-10	21/24 51155	55	05.1	20	70	411	411	411	411	9	9	240	4,9
13	20/ 9 a 23h40'	21/9 a 3h35'	35	85.7	26	78	41 49	41 88	41 119	41 148	41 170	41 175	240	4,9
12	18/ 9 a 11h25'	18/9 a 15h15'	35	100	01	412	120	218	283	403	470	490	235	22,
2	19/0 - 11625	10/0 - 151 151	25	100	(1	410	35	35	35	35	35	35	225	
-1	15/ 9 a 22h40'	16/9 a 4h45'	35	100	61	82	101	174	247	427	622	705	370	30,
1	15/0 - 201 401	16/0 4145	25	100	11	00	105	49	49	49	49	49	252	
0	14/9 a 8h20'	14/ 9 a 11h25'	36	72.2	5/	412	110	181	245	285	290	290	190	8,0
0	14/0 01-001	14/0 111.25	26	70.0			412	84	84	84	84	84	100	
9	11/9 a 15h20'	11/ 9 a 17h25'	35	34.3	86	5	51	90	124	130	155	165	130	2,:
							412	412	412	412	82	82		
38	8/.9 a 5h25'	8/9 a 12h15'	36	66.7	82 -	25	91	167	237	317	417	570	415	7,
							94	94	94	94	94	94		
37	6/ 9 a 20h35'	7/9 a 0h 5'	36	55.6	105	80	49	75	105	209	265	265	215	2,
							105	105	105	105	105	49		
36	6/9 a 7h30'	6/9 a 18h 5'	36	100	94	412	139	261	380	618	1023	1340	640	52,
							61	61	61	11	11	70		
35	4/9 a 1h30'	4/9 a 8h55'	36	100	43	86	64	127	176	278	356	450	450	18,
	mana and there are president from the			0000000			51	51	51	51	51	51	210	5,
4	31/ 8 a 15h25'	31/ 8 a 18h50'	36	41.7	35	84	92	165	206	266	270	270	210	5,
0	20, 54 51 0	20. 0 4 101 5	55	00.0	01	02	-94	280 94	94	94	94	94	510	20,
3	28/8 a 5h 0'	28/ 8 a 10h 5'	35	88.6	61	82	178	280	363	510	565	575	310	20,
1	20/0411100	201 0 a 141100	55	00.0	51	412	26	26	26	212 57	230 105	250 57	205	11.
2	25/ 8 a 11h35'	25/ 8 a 14h55'	35	88.6	57	412	86 109	86 140	86 156	86 212	86 230	86 250	205	1 1
31	23/8 a 1h15'	23/8 a 4h 0'	35	68.6	51	86	98	183	244	325	355	355	170	9,
1	22/0 c 1615	77/0 - 41-01	25	60.6	57	01	70	70	70	70	26	26	100	
0	20/8 a 1h20'	20/8 a 7h15'	35	97.1	57	35	110	176	245	353	410	495	360	24
	2010						105	50	50	50	50	50		
29	15/ 8 a 13h10'	15/ 8 a 16h40'	34	100	57	82	54	87	121	125	125	125	215	7,
							83	83	83	83	83	83		
28	14/ 8 a 15h10'	14/ 8 a 17h40'	34	61.8	51	82	115	224	324	550	695	695	155	6,
							9	9	9	9	9	9	150	51
27	13/8 a 5h 5'	13/ 8 a 12h10'	34	100	61	412	89	178	256	391	567	765	430	37.
		in ou tonio	55	10.1	20	52	26	26	26	26	26	26	150	1,
26	11/ 8 a 13h15'	11/8 a 15h40'	35	45.7	26	32	46	66	88	125	155	215	150	1,
20	17 0 u 01150	// 0 a 11115	55	05.7	01	20	25	25	25	250	275 11	315 11	290	8,
25	7/8 a 6h30'	7/8a11h15'	35	85.7	61	25	61 80	5 128	11 173	11 230	5	28	200	0
						82	49	67	88	105	115	200	470	9,

sur sur

10 mn: 42.8 60.4

sur 15 mn: 30 mn: 100.7 sur

sur 60 mn: 111.8 totalite : : 134.0


(tableau 1). La répartition spatiale des pluies montre des cumuls en général plus importants au sud qu'au nord, en relation avec le gradient climatologique que l'on observe en Afrique de l'Ouest à grande échelle, mais cependant, on trouve des poches de moindre pluviosité au sud dans la zone de Kare (station n° 29 - 591 mm) ou à l'ouest dans celle de Sandideye (station n° 57 - 534 mm) et on observe une poche de plus forte pluviosité au niveau de Niamey (figure 2).

Les deux stations les plus extrêmes sont situées à peu près à la même latitude à une distance de 73 km, ce qui donne un gradient moyen de pluie de 8,8 mm.km⁻¹. Localement on peut trouver des gradients beaucoup plus forts, par exemple dans la ville de Niamey on note 26 mm.km⁻¹ entre les stations de Niamey IRI (n° 83) et Niamey Aéroport (n° 94) distantes de 9 km ou encore au niveau du site central où le gradient atteint 20 mm.km⁻¹ entre Hama Jachere (n° 411) et Darey (n° 18).

1.2 Distribution temporelle

En 1998, la première pluie qui a touché le degré carré s'est produite le 18 avril et elle a concerné la partie nord-ouest de la zone EPSAT-Niger sur une ligne allant de Niamey IRI $(n^{\circ} 83)$ à Gorou goussa $(n^{\circ} 80)$ avec un cumul de 1,1 à 16,9 mm (Boubon Golf - $n^{\circ} 85$). Jusqu'à la fin du mois d'avril, il n'y a pas d'autre événement autre que très local avec des cumuls très faibles. Le premier événement qui touche un grand nombre de stations s'est passé le 30 avril (23/36 stations ont été touchées) et le cumul pluviométrique est assez important (moyenne sur le degré carré de 8,2 mm avec un cumul maximum de 66,8 mm à Harikanassou - n° 41). Cet événement a touché la zone d'étude sur une ligne au sud de Beri koira (n° 21) - Wankama (n° 116). Cet événement a permis d'avoir un mois d'avril (13,3 mm) normal sur la zone d'étude par rapport à la période 1950-89. Durant le mois de mai la mousson va s'installer progressivement, on note entre 3 et 5 événements par station dont trois ont une étendue spatiale conséquente. En juin les événements sont nettement plus abondants, 8 en moyenne avec des hauteurs de pluies un peu plus élevées qu'au mois de mai. Au début de juillet, on note encore cette année une pause pluviométrique entre 7 et 10 jours pour 75 % des stations avec un record des 16 premiers jours de juillet totalement sec à la station de IH Jachère (n° 105). En général les événements de juillet commencent à être très productifs à partir de la troisième décade avec des moyennes de 20 mm sur le degré carré pour trois événements. Août est abondamment pourvu en nombre d'événements et en quantité de pluie, on enregistre en effet une moyenne de 15 jours de pluie par station et 5 événements vont produire une moyenne entre 20 et 50 mm sur le degré carré. On note pendant ce mois d'août deux événements qui vont localement apporter plus de 100 mm, celui du 01/08 (49,5 mm sur le degré carré et 75 % des stations reçoivent plus de 40 mm de pluie) qui apporte aux deux stations de Niamey (Orstom et IRI) 115 et 124 mm et celui du 03/08 (34,9 mm sur le degré carré et 64 % des stations reçoivent plus de 20 mm de pluie) qui donne 115 mm à Debere Gati (n° 25). Pour la station Niamey IRI représentée sur la figure 3, la pluie du 01/08 est répartie sur le 31 juillet et le 1er août, l'événement ayant eu lieu entre 4h30 et 10h45 du matin (la pluie journalière est référencée de 6h00 du matin à 6h00 le lendemain matin). En septembre, le nombre moyen d'événement par station reste élevé (9) et 4 événements vont produire plus de 18 mm sur le degré carré, dont l'événement le plus productif de la saison, le 06/09 (52 mm) entre 7h30 et 18h05. Cet événement va

apporter plus de 100 mm à 5 stations très éloignées les unes des autres (64 % des stations reçoivent plus de 30 mm de pluie) Niamey (Orstom et IRI - 134 et 130 mm), Guilahel (134 mm), IH jachère (132 mm) et Yillade (102 mm). La dernière pluie importante se passe le 27 septembre et elle va toucher près de 80 % des stations. Le 29 septembre on observe encore une pluie qui concerne 10 stations principalement au nord de la zone d'étude avec quelques cumuls supérieurs à 10 mm. La rupture climatique est ensuite très brutale et octobre est en grande partie sec. La dernière pluie relevée a touchée Kollo le 22 octobre et a donné 11,2 mm.

La comparaison des cumuls mensuels entre les stations de Niamey Aéroport, Niamey Orstom et Niamey IRI (**figure 4**), où la distance maximale est d'une dizaine de kilomètres montre une homogénéité des valeurs entre avril et juin et dans une moindre mesure en août. Par contre en juillet et septembre sytématiquement la station de Niamey Aéroport est déficitaire d'1/3 par rapport à Niamey Orstom et Niamey IRI. A noter que pour les autres mois Niamey Aéroport est aussi légèrement déficitaire par rapport aux deux autres stations, certains auteurs ont proposé l'existence localement d'un effet mémoire qui serait lié au taux d'humectation du sol et qui favoriserait les conditions de pluviogenèse, ce qui reviendrait à dire la pluie attire la pluie, mais à ce jour cette relation stationnelle n'est pas mise en évidence.

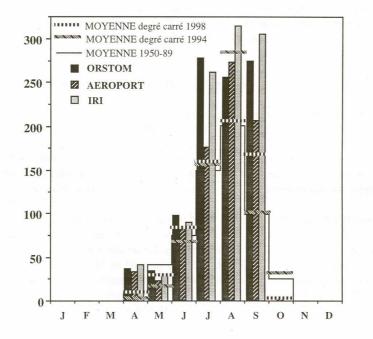


Figure 4: Comparaison des cumuls mensuels 1998 (mm) des 2 stations de Niamey avec les cumuls moyens mensuels sur la période 1950-89.

La première pluie spatialement importante (au moins 30 % de stations touchées) est tombée, comme on l'a dit précédemment le 30 avril (64 % de stations touchées), mais il faudra attendre le 8 juin pour avoir la première averse conséquente, supérieure à une moyenne de 10 mm (17,8 mm), **tableau 2**. La dernière pluie importante spatialement a été enregistrée le 27 septembre et a donné une pluie moyenne de 5,2 mm sur la zone. Le nombre d'événements majeurs en 1998 est égal à 44, ce qui est un chiffre médian comparable à l'année 1991, saison des pluies normale. A noter que 1994 avait donné un nombre de 55 événements majeurs.

Le cumul total des événements majeurs représente 90 % du total saisonnier soit 593 mm. La distribution des précipitations au cours de la saison met en évidence une très forte représentation en nombre et en cumul des événements majeurs au mois d'août (30 % et 38 %), ce qui est normal puisque les conditions de néogenèse des précipitations sur la zone sont optimales, par contre on peut remarquer que cette situation perdure durant tous le mois de septembre (23 % et 26 %) expliquant le fort cumul obtenu pour ce mois ci. A noter que durant juillet, qui reste un bon mois du point de vue du cumul, la participation des événements majeurs a été moindre qu'en septembre (20 % et 17 %). En ce qui concerne le nombre de systèmes de grande extension spatiale (au moins 80 % de stations touchées), qui représentet 50 % des événements majeurs, c'est logiquement qu'il sont majoritairement représentés durant le mois d'août (9/13), de même pour le mois de septembre où les conditions de pluviogenèse restent bonnes (5/10). L'épisode qui a donné la hauteur de pluie moyenne la plus importante sur le degré carré (52,1 mm) s'est passé le 6 septembre. Par rapport aux sept saisons précédentes (29 -54 mm) ce cumul maximal enregistré sur la saison est en seconde position après celle enregistrée durant la saison 1994.

1.3 Situation pluviométrique annuelle à l'échelle du Niger

La saison 1998 sur l'ensemble du territoire nigérien est largement excédentaire (**figure 5**). Au nord du Niger, les isohyètes montrent un excédent pluviométrique important surtout dans la partie nord-ouest du Niger où l'on constate un écart de 100 km par rapport à la période 1950 - 1994. Au sud cet excédent atteint de 100 à 200 mm par rapport à la période 1950 - 1994. Par contre à l'est du Niger dans la zone de Diffa les isohyètes ont tendance à décroître plus rapidement et on se retrouve avec une pluviométrie normale par rapport à la période 1950 - 1994.

Par comparaison avec les cartes d'isohyètes du Niger des années 1990 à 1998 (**figure 6**), la saison 98 dans le nord du Niger est assez semblable à ce qu'on avait en 1994 (Agadez 225,1 en 1994 et 196,8 en 1998 - Bilma 6,1 en 1994 et 6,2 en 1998) donc un excédent de pluviométrie tandis qu'au sud de Niamey et à l'est du Niger la pluviométrie même si elle reste excédentaire dans la plupart des stations l'est beaucoup moins qu'en 1994. Pour respectivement 1994 et 1998 on note à N'Guigmi 428-260 mm, à Diffa 499-293 mm, à Birni N'koni 733-532 mm à Tahoua 636-480 mm et à Gaya 952-879 mm.

1.4 Comparaison avec les résultats acquis les autres années de l'expérience EPSAT-NIGER - 1990 à 1998

Cette année, la fourchette des hauteurs de pluie montre un rapport de 2,6, c'est le rapport le plus élevé enregistré depuis 1990. La carte des isohyètes montre une décroissance nette vers le nord-est (figure 7). Sur l'échantillon, que constitue les neuf années de l'étude, la moyenne sur le degré carré est de 517 mm, on observe donc une tendance légèrement plus excédentaire à long terme que celle observée pour la période postérieure à 1968 sur la station de référence de Niamey Aéroport (505 mm). Il est quand même à noter que cette excellente année tend à renverser une tendance légèrement déficitaire marquée par la très mauvaise saison 1997 qui avait donné une moyenne sur les 8 dernières années de 499 mm.

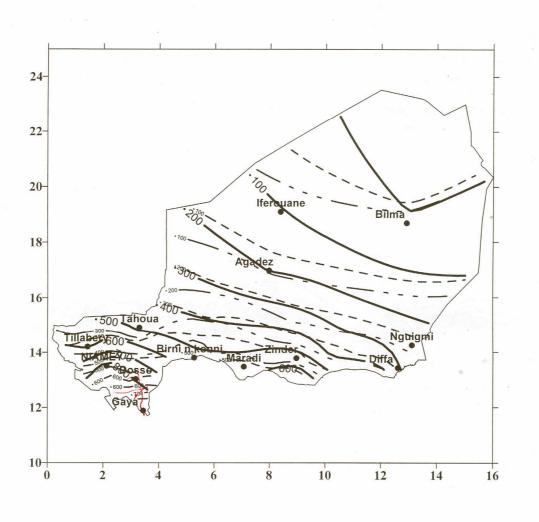


Figure 5: Comparaison des isohyètes de la saison 1998 (trait gras plein) sur le Niger avec les isohyètes inter-annuelles sur la période 1950 -1994 (tireté continu) et sur la période 1968 -1994 (tireté discontinu).

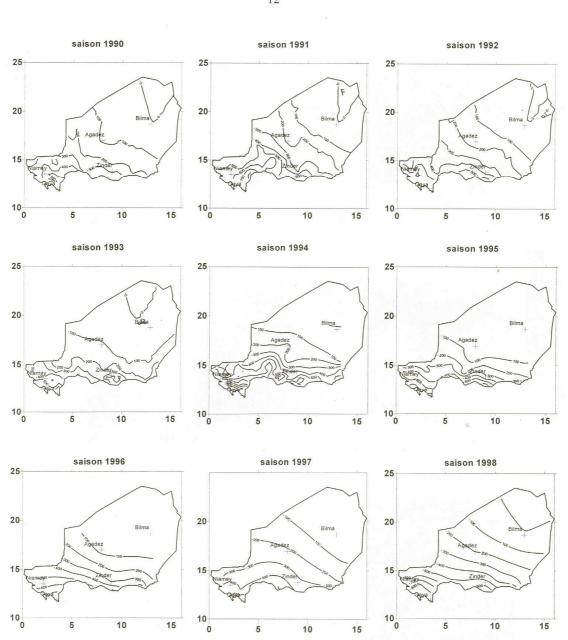
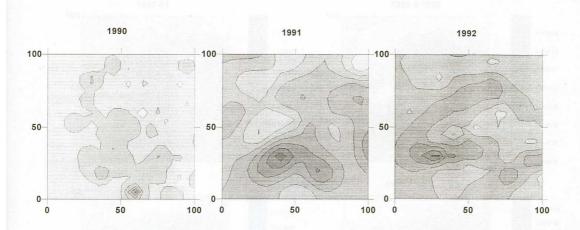
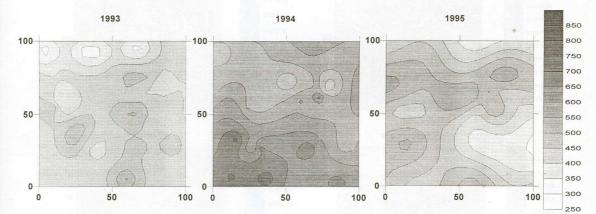
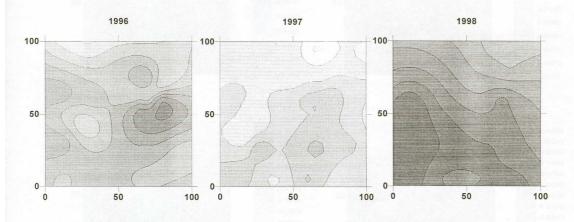





Figure 6: Comparaison des isohyètes annuelles sur le Niger (mm) pour les années 1990 à 1998.

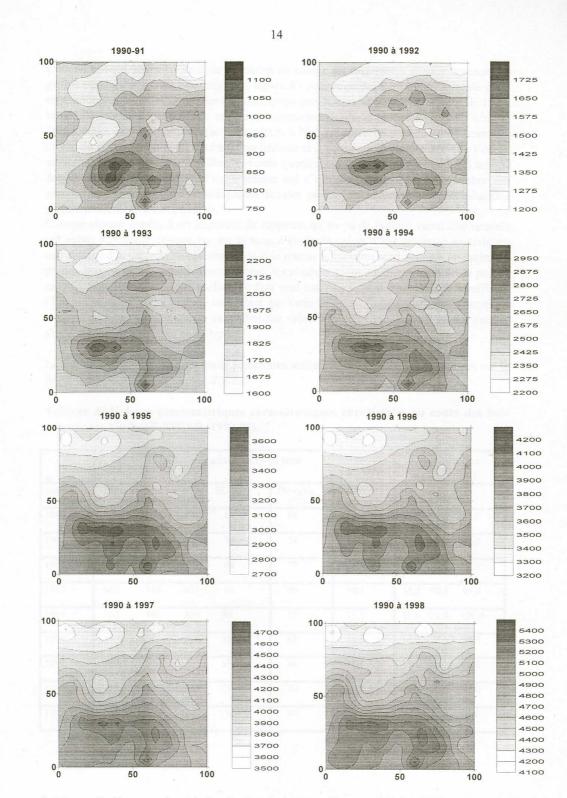


Figure 8: Comparaison de la pluviométrie annuelle cumulée des différentes années.

Comme chaque année on analyse les cartes de cumul des différentes années (somme des grilles saisonnières issues du krigeage, **figure 8**) pour regarder l'évolution spatiale de la répartition des pluies. La carte des cumuls montre progressivement, surtout à partir de 1994, la prédominance d'un gradient nord-sud caractéristique de la climatologie de l'Afrique Occidentale, que l'on ne distingue pas toujours à l'échelle annuelle. Chaque année cumulée affine de plus en plus cette structuration linéaire et il est possible maintenant que l'on ait atteint un certain régime d'équilibre. On note quand même que la zone de Guilahel montre depuis 1990 un léger excédent systématique qui n'est que peu lissé avec le nombre des années, des conditions météorologiques locales pourraient favoriser les précipitations préférentiellement à cette endroit.

Comme chaque année, il est impératif de rappeler, qu'au vu de la forte variabilité spatiale qui existe à l'échelle saisonnière sur la zone d'étude, le calcul d'une moyenne spatiale sur une surface donnée n'est représentatif que si le réseau de mesures rend compte, du moins en partie, de cette hétérogénéité. Pour le Sahel, les résultats montrent qu'une dizaine de postes, répartis régulièrement sur la surface où l'on veut calculer la pluie moyenne, est suffisant (**Taupin et al., 1993a**). Il reste cependant que cette moyenne "régionale" est à manipuler avec précaution, sachant que la variabilité des valeurs est telle que 30 à 40 % des stations s'en éloignent de plus d'un écart-type.

Le **tableau 3** résume les principaux paramètres statistiques pluviométriques obtenus sur le degré carré pour les neuf années d'étude.

		(Cumuls	saisonnie	rs en mm		Maxima à une station (mm)
Année	Moy D.C. (m)	Min (m)	Max (M)	ECT	(M-m)/µ (%)	C.V. (%)	Max. Max. Max. 5' 60' Evt
1990	419	292	659	62	88	14,8	30,0 75,0 102,0
1991	522	341	725	79	74	15,1	17,5 85,0 162,0
1992	513	389	782	68	77	13,3	29,0 74,5 92,0
1993	463	314	621	84	66	18,1	15,5 80,8 95,5
1994	663	492	856	90	55	13,5	15,0 108,8 120,0
1995	495	323	636	72	63	14,5	16,2 75,5 89,5
1996	503	374	597	56	44	11,1	15,6 88,2 110,0
1997	417	273	565	73	70	17,5	21,5 85,8 99,0
1998	659	402	1044	136	97	20,6	22,1 111,8 134,0

 Tableau 3: Valeurs pluviométriques caractéristiques enregistrées au cours des huit campagnes d'EPSAT-NIGER (1990-98).

LE RESEAU DE PLUVIOGRAPHES

2.1 Le réseau en 1998

L'expérimentation EPSAT-Niger est dans une phase de suivi à long terme depuis la saison 1994, ceci a impliqué une diminution progressive du nombre de pluviographes au fur et à mesure que les expérimentations s'achevaient. Comme pour les années antérieures la couverture pluviographique s'étend sur environ 16 000 km², limitée en longitude par les méridiens 1°40 E et 3°E et en latitude par les parallèles 13 et 14° N. Cette année le réseau est identique à celui de l'année dernière et comprend donc 36 postes (tableaux 4 et 5, figure 9). Le type de pluviographe est à augets basculeurs, muni d'un cône de 400 cm² (Lebel et al., 1991). Ce réseau comporte une maille de base de 25 km qui, au regard des * travaux qui ont déjà été effectués, semble suffisant pour obtenir des valeurs moyennes de pluie sur les surfaces de l'ordre du degré carré.

2.2 Installation et surveillance du réseau

Sept postes ont fonctionné en permanence entre la fin de la saison des pluies 1997 et le début de la saison des pluies 1998, deux postes supplémentaires ont en effet été maintenus dans le cadre du suivi des marres et des nappes (Kollo, n°54 et Wankama, n°116). Les autres ont été démontés, nettoyés, testés et entreposés durant la saison sèche. Cette année, trois cartes électroniques "oedipe" se sont avérées hors d'usage au cours de la saison et ont été remplacées immédiatement à partir du stock constitué par le surplus de pluviographes issus du réseau dense d'EPSAT-Niger.

Le planning d'installation des stations (**tableau 1**) a commencé le 26 mars (Kafina, n° 413) et s'est terminé le 17 avril (Berkiawel, n°28).

La plupart des stations implantées près des villages, ont été surveillées en permanence par un gardien, évitant ainsi la plupart des déprédations et vols. Pour obtenir un suivi de la meilleure qualité possible, compte tenu du personnel disponible et du budget, chaque station a reçu une visite de contrôle au moins tous les 31 jours durant toute la saison des pluies. Les cartouches ont été changées environ tous les 45 jours pour permettre de suivre l'évolution de la saison des pluies en temps le moins décalé possible.

En fin de saison, le démontage des stations s'est effectué entre le 19 octobre et le 27 octobre (Bololadie, n° 84).

station	Identification	Lat	itude		Long	itude		Altitude	Х	Y	EPSAT
		deg	min	sec	deg	min	sec				
								£			
Alkama	1321204300	13	49	19	02	57	28	205	103,32	91,39	4
Banizoumbou	1321201100	13	31	58	02	39	37	202	71,34	59,25	1
Bazanga Bangou	1321200500	13	30	20	02	34	59	266	63,01	56,21	
Beri Koira	1321202100	13	38	59	02	28	37	215	51,49	72,26	21
Berkiawel	1321202800	13	30	41	02	18	31		33,33	56,86	28
Bogdjottou	1321241200	13	04	50	01	49	48		-18,41	7,75	412
Bololadie	1321208400	13	13	29	01	52	12		-14,06	24,98	84
Boubon Golf	1321208500	13	36	24	01	56	09		-6,93	67,46	85
Darey	1321201800	13	38	12	02	44	32	250	80,14	70,80	18
Debere Gati	1321202500	13	03	40	02	06	52	230	12,38	6,78	25
Fandou Beri	1321200900	13	31	55	02	33	31	232	60,36	59,14	ç
Gamonzon	1321203400	13	27	40	03	01	54		111,49	51,28	34
Gardana Kouara	1321205000	13	50	04	02	16	33	212	29,78	92,78	50
Gorou Goussa	1321208000	13	50	18	02	02	08		3,83	93,22	80
Guilahel	1321204900	13	17	41	02	08	45	274	15,77	32,79	49
Hama jachère	1321241100	13	33	05	02	41	44		75,14	61,33	411
Harikanassou	1321204100	13	15	28	02	50	28	208	90,99	28,65	41
IH Jachere hapex1	1321210500	13	14	38	02	14	39		26,41	27,11	105
Kafina	1321241300	13	42	51	02	43	59		78,42	78,79	413
Kaligorou	1321206100	13	36	44	03	00	47	200	109,4	68,09	61
Kare	1321202900	13	02	52	02	20	19	200	36,65	5,32	29
Kokorbe Fandou	1321202300	13	51	10	02	37	11	200	66,85	94,82	73
Kollo	1321207500	13	22	27	02	14	40	198	26,42	41,61	54
Koure Kobade	1321202600	13	00	17	02	03	00	220	113,71		26
Koure Sud	1321202000	13	14	31	02	36	18	255	65,45	26,89	51
Koyria	1321208200	13	46	00	01	42	00	200	-32,38	85,25	. 82
Mali Djibo	1321226900	13	33	06	02	40	06		72,21	61,36	269
Massi Koubou	1321220900	13	49	37	02	25	00	250	44,95	91,94	78
Niamey Aeroport	1321209400	13	28	47	02	10	23	250	18,71	53,36	94
Niamey IRI	1321208300	13	30	00	02	05	21		9,63	55,6	83
Niamey ORSTOM	1321207000	13	31	52	02	05	48	220	10,44	59,07	70
Sandideve	1321207000	13	13	31	02	03	48 14	220			57
Tanaberi	1321203200	13	02	30	03	32	14 53	250	114,01	25,06	
Torodi	1321203200	13	02						59,34	4,63	32
Wankama		13	39	00	01	47	06		-23,27	12,97	86
Wankama Yillade	1321211600 1321203500	13	39 01	00 16	02 02	38 47	55 10	237	70,02 85,12	72,28 2,35	116

Tableau 4: Liste des 36 postes du réseau en 1998, classés par ordre alphabétique.

X, Y coordonnées dans le degré carré (origine du repère 2 E, 13 N) : Y=(Latd.-13)*111,2 en km X=(Longd.-2)*(108,3-0,5*Y/111,2) en km Latd. et Longd. et la congl. et la cong

Latd. et Longd. en degré décimaux

EPSAT	station	Identification	Lati	tude		Long	gitude		Altitude	Х	Y
			deg	min	sec	deg	min	sec			
5	Bazanga Bangou	1321200500	13	30	20	02	24	50		10 01	
9					20	02	34	59	266	63,01	56,21
9	Fandou Beri	1321200900	13	31	55	02	33	31	232	60,36	59,14
11	Banizoumbou	1321201100	13	31	58	02	39	37	202	71,34	59,25
18	Darey	1321201800	13	38	12	02	44	32	250	80,14	70,80
21	Beri Koira	1321202100	13	38	59	02	28	37	215	51,49	72,26
25	Debere Gati	1321202500	13	03	40	02	06	52	230	12,38	6,78
26	Koure Kobade	1321202600	13	00	17	03	03	00	220	113,71	0,52
28	Berkiawel	1321202800	13	30	41	02	18	31	220	33,33	56,86
29	Kare	1321202900	13	02	52	02	20	19	200	36,65	5,32
32	Tanaberi	1321203200	13	02	30	02	22	52		50.24	1.60
34						02	32	53		59,34	4,63
	Gamonzon	1321203400	13	27	40	03	01	54	0.07	111,49	51,28
35	Yillade	1321203500	13	01	16	02	47	10	237	85,12	2,35
41	Harikanassou	1321204100	13	15	28	02	50	28	208	90,99	28,65
43	Alkama	1321204300	13	49	19	02	57	28	205	103,32	91,39
49	Guilahel	1321204900	13	17	41	02	08	45	274	15,77	32,79
50	Gardana Kouara	1321205000	13	50	04	02	16	33	212	29,78	92,78
51	Koure Sud	1321205100	13	14	31	02	36	18	255	65,45	26,89
54	Kollo	1321205400	13	22	27	02	14	40	198	26,42	41,61
57	Sandideye	1321205700	13	13	31	03	03	14	230	114,01	25,06
61	Kaligorou	1321206100	13	36	44	03	00	47	200 🎙	109,40	68,09
70	Niamey ORSTOM	1321207000	13	31	52	02	05	48	220	10,44	59,07
73	Kokorbe Fandou	1321207300	13	51	10	02	37	11	har har ()	66,85	94,82
78	Massi Koubou	1321207800	13	49	37	02	25	00	250	44,95	94,82 91,94
30	Gorou Goussa	1321208000	13	50	10	02	02	0.0		2.02	02.22
32	Koyria				18	02	02	08		3,83	93,22
83	Niamey IRI	1321208200	13	46	00	01	42	00		-32,38	85,25
83 84	Bololadie	1321208300 1321208400	13	30	00	02	05	21		9,63	55,60
84 35			13	13	29	01	52	12		-14,06	24,98
	Boubon Golf	1321208500	13	36	24	01	56	09		-6,93	67,46
36	Torodi	1321208600	13	07	00	01	47	06		-23,27	12,97
94	Niamey Aeroport	1321209400	13	28	47	02	10	23		18,71	53,36
105	IH Jachere hapex1	1321210500	13	14	38	02	14	39		26,41	27,11
116	Wankama	1321211600	13	39	00	02	38	55		70,02	72,28
269	Mali Djibo	1321226900	13	33	06	02	40	06		72,21	61,36
11	Hama jachère	1321241100	13	33	05	02	41	44		75,14	61,33
413	Kafina	1321241300	13	42	51	02	43	59		78,42	78;79

Tableau 5: Liste des 36 sites du réseau en 1998, classés par numéro.

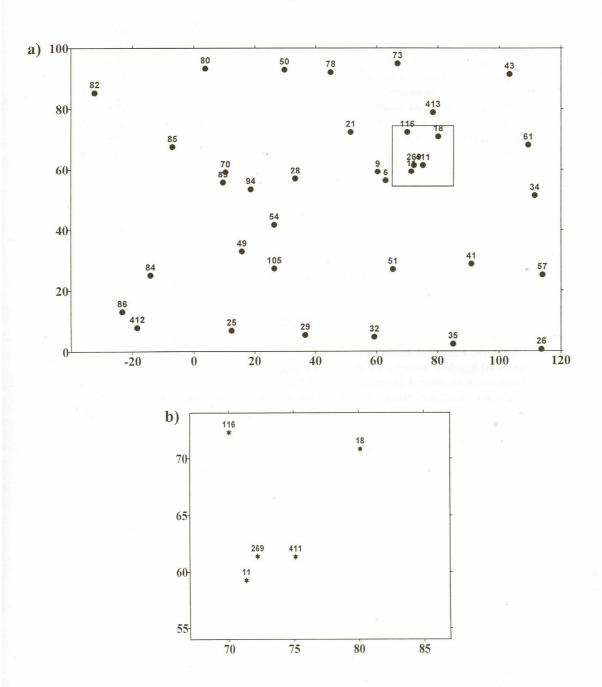


Figure 9: Dispositif de mesures durant la saison 1998. a) zone complèteCoordonnées en km - Origine: 2°E, 13°N.b) site central

2.3 Fonctionnement

En 1998, le taux de fonctionnement reste à un bon niveau. Pour les 36 pluviographes, le taux a atteint 98,4 % (117 jours de panne pour 7136 jours d'appareillage) et on n'a pas enregistré de lacune seau. Sept appareils ont connu des avaries (**tableau 6**).

Sur l'ensemble des stations, 80 % des postes ne présentent pas de lacune augets (pour le détail des pannes des stations en lacunes se reporter à l'annexe A-1). Ce faible taux de lacunes sur les augets a permis de reconstituer les cumuls saisonniers et mensuels de la plupart des stations.

2.4 Dérives en temps

Comme les années précédentes, on constate une dérive en temps bien supérieure à celle donnée par le constructeur qui est normalement de 10 secondes par mois (**tableau 7**). Les dérives sont comprises entre -1 et +48 minutes pour 100 jours, elles sont stables d'une année sur l'autre et sont liées aux caractéristiques de chaque oedipe.

2.5 Comparaison valeurs seau et valeurs augets

Suivant le même dispositif que l'an dernier (haubanage de certaines stations), cette année, l'écart entre le cumul augets et le cumul seau pour la saison a été encore amélioré (**tableau** 8). L'écart maximal atteint sur la saison, 3,2 % avec seulement 1 poste avec un écart supérieur à 3,0 %. L'écart relatif moyen seau-augets sur les 32 postes sans lacune est égal à 1,5 %.

Tableau 6: Périodes de fonctionnement des 36 pluviographes installés en 1998.

EPSAT-NIGER : Periodes de fonctionnement en 1998 ------_____ Periodes de fonctionnement Stations . _______ _____ Nom | Mars | Avril| Mai | Juin | Juil.| Aout | Sept.| Oct. | Nov. | _____ _____ _____ ____ _____ Alkama _ _ _ _ _ _ _ _ _ _ _ _____ _____ _ _ _ _ _ _ _ _ _ _ _ _ ____ Banizoumbou _____ _ _ _ _ _____ _____ ----------_ _ _ _ _ _ Bazanga Bang. - - -_ _ _ _ _ _ _ _ _ _ _ _ _ _____ - - -_ _ _ _ _ _ _ _ _ _ _ _ Beri Koira _____ _ _ _ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ Berkiawal - - 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ -----Bogdjottou _____ _ _ _ _ _ _ Bololadie -_____ ___ Boubon Golf _ _ _ _ _ _ _ - -____ ____ _ _ _ _____ ---_ _ _ _ _ _ Darev ____ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ _ _ _ _ _ ____ Debere Gati _____ _____ ----____ _ _ _ _ ___ __ ----Fandou Beri _____ _____ - - - - - -____ _____ _ _ _ _ _ _ _ _ _ _ _ Gamonzon - - - -_ _ _ _ _ _ -----_ _ _ _ _ _ _ Gardana Kouara _ _ _ _ _ _ _____ ----____ ____ - -Gorou Goussa ____ ----_ _____ Guilahel - ----_____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Hama Jachere - - - -_ _ _ _ _ _ ____ -----____ - - -_ _ _ _ _ _ Harikanassou _ _ _ _ _ _ _ ----_ IH Jachere _ _ _ _ _ _ _ --------_ _ _ _ _ _ _ _ _ _ _ _ _____ _____ Niamey IRI - - -_____ _ _ _ _ _ _ _____ _ _ _ _ _ _ Kafina _ ----_ _ _ _ _ _ - - -Kaligorou _ _ _ _ _ ----_ _ _ _ _ _ _ _ _ _ _ _ _____ _ _ _ _ _ _ _ _____ Kare _____ _____ -- -- - -____ _ _ _ _ _ _ _ _ _ Kokorbe Fand. _____ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ _ _ _ _ _ _ Kollo _ _ _ _ _ _ _____ _____ -Koure Kobade _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ _ _ _ _ _ _ ____ _____ Koure Sud _ _ _ _ ----_ Koyria ____ _____ _ _ _ _ Mali Djibo _ _ _ _ _ _ _____ _ _ _ _ _ _ _ _ _ - ----_ _ _ _ _ _ _____ Massi Koubou _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ Niamey Aer. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Niamey ORSTOM _ _ _ _ _ _ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ----_ - - -Sandideye _ _ _ _ _ _ _ _ _ _ _ _ - - - ------_____ Tanaberi _ _ _ _ _ ----____ _____ _____ _ _ _ _ _ _ _____ _ _ _ _ _ _ _ _ _ _ _ Torodi _ _ _ _ _ _ - - -----_____ ___ _____ -----Wankama ----- ----- -------------Yiladde _ _ _ _ _

Station	Cart. 1	Cart. 2	Cart. 3	Cart. 4	Cart. 5	Cart. 6
Alkama	26	26	26	26		
Banizoumbou	29	29	30	30		
Bazanga Bangou	- 1	-1	0	-1		
Beri Koira	23	23	23	23		
Berkiawel	25	25	25	23		
Bogdjottou	9	7	7	7		
Bololadie	30	30	29	29		
Boubon Golf	26	26	26	26		
Darey	7	7	7	7		
Debere Gati	10	10	10	10		
Fandou Beri	9	9	9	7		
Gamonzon	29	29	30	29		
Gardana Kouara	10	10	10	9		
Gorou Goussa	0	0	0	12	12	0
Guilahel	27	27	27	. 26		
Hama jachère	34	36	37	37	34	
Harikanassou	10	10	12	12	6	
IH Jachere hapex l	48	48	48	46		
Kafina	5	5		6	6	
Kaligorou	29	29	29	29		
Kare	6	6	6	6	5	
Kokorbe Fandou	5	5	5	5		
Kollo	- 1	-1	-1	- 1		
Koure Kobade	13	13	13	13		
Koure Sud	7	7	7	7	7	
Koyria	6	5	7	5	6	
Mali Djibo	6	6	7	5		
Massi Koubou	29	29	30	29		
Niamey Aeroport	9	7	7	9	6	
Niamey IRI	10	10	12	10		
Niamey ORSTOM	27	27	27	27		
Sandideye	29	29	29	29		
Tanaberi	- 1	-1	0	-1		
Torodi	32	32	32	32		
Wankama	12	12	12	12		
Yillade	26	26	26	27	26	

Tableau 7: Dérives de temps en minutes calculées pour chaque cartouche lors du dépouillement, rapportées à 100 jours de fonctionnement.

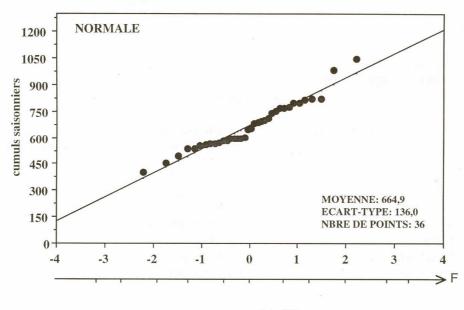

Station	n°Epsat	période compar		cumul augets	cumul seau	delta %
	12	13/04	19/10	489,0	495,7	-1,4
Alkama	43 11	06/04	11/10	710,5	699,0	1,6
Banizoumbou	5	06/04	21/10	586,0	578,6	1,3
Bazanga	21	15/04	19/10	541,0	536,0	0,9
Beri Koira	21	17/04	19/10	658,5	649,9	1,3
Berkiawel	28 412	02/04	27/10	812,0	795,9	2,0
Bogdjottou		02/04	27/10	809,0	819,4	-1,3
Bololadie	84	02/04	20/10	lacune	581,3	
Boubon	85	14/04	20/10	lacune	551,5	
Darey	18		26/10	815,0	818,6	-0,4
Debere Gati	25	01/04	20/10	815,0	010,0	
Fandou Beri	9	20/05	21/10	531,5	518,1	2,6
Gamonzon	34	11/04	22/10	575,0	560,7	2,6
Gardama	50	16/04	22/10	lacune	592,2	
Gorou Goussa	80	16/04	22/10	572,5	589,9	-2,9
Guilahel	49	01/04	26/10	761,5	769,4	-1,0
	411	06/04	21/10	744,0	766,1	-2,9
Hama Jachere	411	11/04	22/10	650,0	641,9	1,3
Harikanassou	105	03/04	26/10	836,5	816,5	2,4
IH Jachere	413	26/03	19/10	lacune	401,9	
Kafina	61	13/04	19/10	594,0	590,8	0,5
Kaligorou	01	15/04	17/10			
Kare	29	01/04	26/10	607,5	590,9	2,8
Kokorbe Fandou	73	14/04	14/09	401,5	399,9	0,4
Kollo	54	30/03	23/10	786,0	761,4	3,2
Koure Kobade	26	07/04	21/10	677,0	680,3	-0,5
Koure Sud	51	07/04	21/10	736,5	735,0	0,2
Koyria	82	04/04	20/10	587,0	597,6	-1,8
Mali Djibo	269	06/04	21/10	711,5	708,5	0,4
Massi Koubou	78	15/04	19/10	566,0	566,0	0,0
	94	30/03	23/10	790,5	793,3	-0,4
Niamey Aeroport Niamey IRI	83	30/03	23/10	1024,5	1043,9	-1,9
i manoj iti						0.0
Niamey Orstom	70	27/03	23/10	970,5	978,1	-0,8
Sandideye	57	11/04	22/10	543,5	534,3	1,7
Tanaberi	32	05/04	23/10	693,0	686,2	1,0
Torodi	86	02/04	27/10	700,5	691,4	1,3
Wankama	116	14/04	20/10	562,0	555,7	1,1
Yillade	35	07/04	21/10	782,0	765,5	2,2

Tableau 8: comparaison des valeurs totales de la saison (mm), seau et augets.
delta = (augets - seau)/seau, en pour cent.

ANALYSE PRELIMINAIRE DE LA STRUCTURE DES CHAMPS PLUVIOMETRIQUES

3.1 Cumuls saisonniers

Comme pour la plupart des années, exception faite de la saison 1992, les cumuls saisonniers enregistrés sur le degré carré, pour la période de référence 15 avril-15 octobre, se répartissent selon une loi normale, pour cette année de moyenne arithmétique égale à 664,9 mm avec un écart-type de 136,0 mm (**figure 10**).

gauss variate (U)

Figure 10: Ajustement d'une loi normale sur les cumuls de la période 15 avril - 15 octobre.

Le variogramme saisonnier pour la saison 1998 (**figure 11**), montre une structure à tendance linéaire que l'on peut modéliser par une fonction linéaire de pépite égale à 5100 et de gradient égal à 140. La construction de la carte d'isohyètes saisonnière et des ECT correspondants à partir de cette fonction linéaire est représentée dans la **figure 12**.

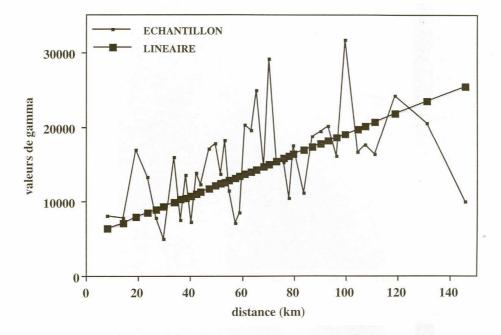
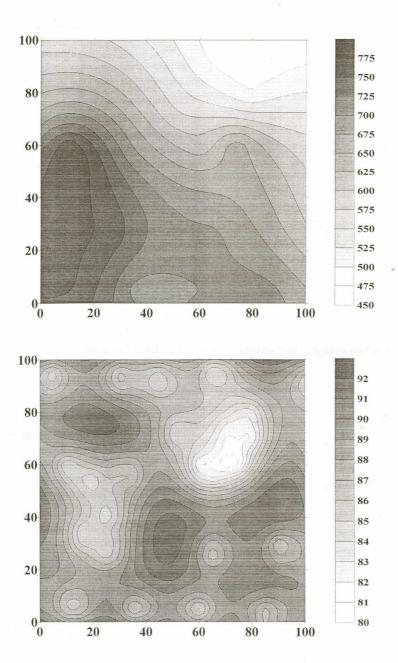


Figure 11: Fonction de structure des cumuls (15 avril - 15 octobre), et essai d'ajustement par un variogramme linéaire (5100, 140).


On a essayé d'améliorer le variogramme expérimental en travaillant sur les résidus à la dérive climatologique. On a tout d'abord estimé ce gradient à partir du calcul de la moyenne krigée sur des bandes est-ouest (**figure 13**) de 5 km de large. Ce gradient est parfaitement visualisé et est parfaitement linéaire du nord au sud du degré carré ($r^2 = 0,87$). La décroissance calculée à partir des bandes de 5 km de large donne une valeur d'environ 2,2 mm/km, ce qui correspond cette année approximativement au double du gradient enregistré à l'échelle du Niger.

On a calculé en tout point un résidu à cette dérive selon la formule : $e_i = z_i - M(x_i, y_i)$

où e_i est le résidu à la station i, z_i le cumul saisonnier mesuré à cette station et $M(x_i,y_i)$ est la dérive estimée par la relation obtenue précédemment :

 $M(x_1, y_1) = 772, 3 - 2, 15y_1$

x_i et y_i sont les coordonnées en km dans le repère d'origine (2°E, 13°N)

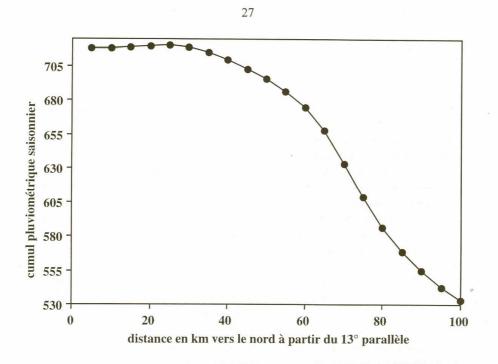


Figure 13: Moyenne des cumuls (15 avril - 15 octobre) calculée par krigeage sur des bandes latitudinales de largeurs 5 kilomètres.

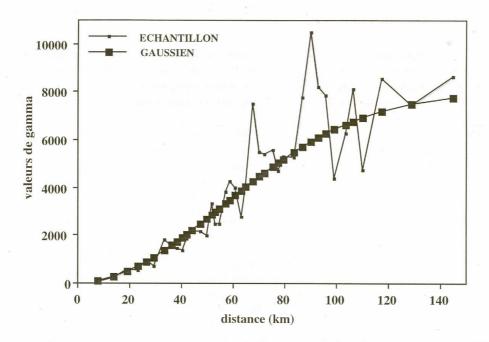


Figure 14: Structure des cumuls (15 avril - 15 octobre). Variogramme des résidus à la dérive M(x,y) = 772,3 - 2,15y.

Le variogramme des résidus (**Figure 14**) est parfaitement défini par une fonction gaussienne qui améliore légèrement l'erreur sur la reconstitution des mesures.

3.2 Analyse par épisodes

Le nombre d'épisodes majeurs en 1998 est égal à 44, selon les critères d'extension spatiale et de continuité temporelle définis précédemment (cf. tableau 2). La circulation des systèmes convectifs sur la zone du degré carré respecte en général la circulation E-O, la première station touchée par la pluie se trouvant à l'est du degré carré et la dernière à l'oucst du degré carré (19 événements majeurs) ou E-S (3 événements majeurs). Quelques systèmes abordent la zone par le nord ou par le sud et se dégagent vers l'ouest (7 événements majeurs). Les autres événements se répartissent en trois groupes : convections strictement locales (4), systèmes venant d'un des bords du degré carré mais dégénérant sur la zone (3), systèmes prenant naissance sur le degré carré et s'éloignant vers l'ouest (8). Par rapport aux années précédentes, le nombre d'épisodes majeurs est un des plus élevé (1991-47 ; 1992-50 ; 1993-38; 1994-55; 1995-32; 1996-38; 1997-34; 1998-44). Le tableau 9 résume les différentes caractéristiques des événements majeurs pour les années 1991 à 1998. Au vu de l'échantillon dont on dispose la relation entre le nombre d'événements majeurs et le cumul saisonnier donne un r² de 0,48, c'est plus faible que la relation obtenue l'année dernière (0,65) la relation entre le nombre d'événements de grande extension spatiale (80 % de stations touchées) et le cumul saisonnier ne donne pas non plus de bon résultat ($r^2 = 0.48$) et on peut penser avec le recul de ces 8 années que ces critères ne sont en fait pas très pertinents pour déterminer la qualité de la saison des pluies.

Tableau 9: Comparaison pour les années 1991 à 1998 du nombre d'événements majeurs, du cumul saisonnier, du cumul total des événements majeurs (au moins 30 % de stations touchées) et du pourcentage en nombre d'épisodes et en hauteur du total saisonnier des événements ayant touchés plus de 80 % des stations en fonctionnement.

	1991	1992	1993	1994	1995	1996	1997	1998
nb évts > 30 %sts	47	50	38	55	32	38	34	44
cumul saisonnier	522	513	463	663	495	503	418	659
cumul évts majeurs	519	504	424	538	454	446	366	593
80 %sts cumul en %	80	85	75	71	84	80	65	72
80 %sts nbre en %	64	54	70	55	66	68	41	50

Sur les huit années, on peut, par contre, constater que la participation des événements majeurs dans le cumul total de la saison varie d'une année sur l'autre entre 81,1 % et 99,5 %, ceci ne semble pas être corrélé à la qualité de la saison, mais cela reste un bon indicateur de l'importance des événements locaux à faible dispersion spatiale et à leur contribution plus ou moins grande au cumul saisonnier.

La comparaison de la répartition des événements majeurs au cours de la saison 1994 et . 1998, deux saisons fortement excédentaires (**figure 15**), montre un comportement différent dans le type de système de mésoéchelle qui a circulé au dessus du degré carré. En 1998, les systèmes sont présents du début mai à la fin de la saison alors qu'en 1994 il faut attendre le début juin pour avoir des systèmes importants. Pour un total saisonnier identique, en 1994 on a 55 événements majeurs pour 44 en 1998, mais en 1994 ils sont beaucoup moins productifs 9,8 mm par événement contre13,5 mm en 1998.

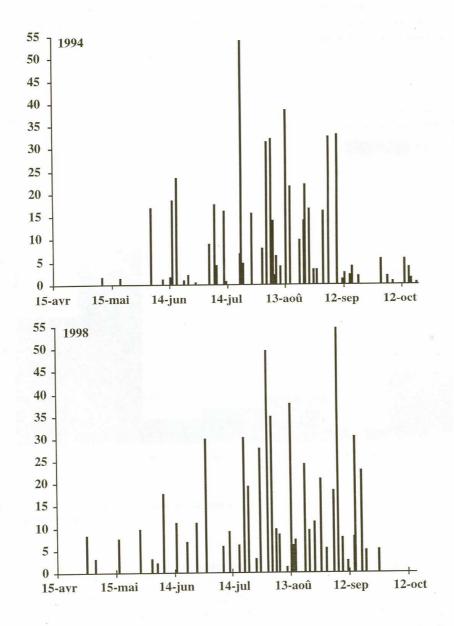


Figure 15: Chronologie et cumul moyen des événements majeurs (mm) enregistrés sur le degré carré en 1994 et 1998.

Concernant les événements ayant touchés 80% des stations, ils représentent un peu plus de 70 % du cumul saisonnier pour les 2 années, néanmoins en 1998 on en note 8 de moins (22 pour 30), on a donc a nouveau plus grande productivité de ces grands systèmes en 1998 par rapport à 1994.

Ce que l'on a dit précédemment est bien mis en valeur par l'histogramme des cumuls des épisode majeurs sur le degré carré (**figure 16**). En effet le nombre des épisodes à cumul inférieur à 5 mm en 1994 représente 53 % des événements majeurs alors qu'en 1998 il n'en représente que 25 %, d'où une moins bonne productivité en 1994.

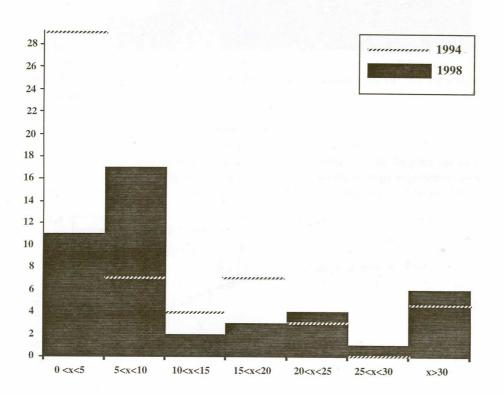


Figure 16: Histogramme du cumul en mm des épisodes spatiaux majeurs de la saison 1994 et 1998.

L'histogramme de répartition de la durée des épisodes majeurs (**figure 17**) pour la saison 1998 montre deux zones préférentielles entre 2 et 4 heures et entre 5 et 7 heures, la seconde zone implique là aussi une productivité importante des systèmes en 1998, car on a une relation évidente entre le temps de passage du système et son cumul pluviométrique moyen sur le degré carré.

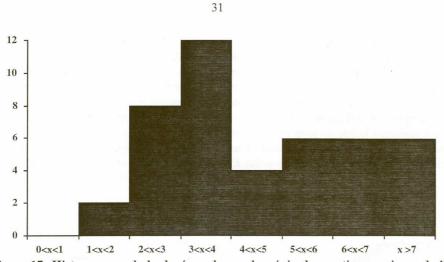


Figure 17: Histogramme de la durée en heure des épisodes spatiaux majeurs de la saison 1998.

Cette année, les épisodes de grande extension spatiale sont au nombre de 22/44 (événements qui ont touché au moins 80 % de stations) pour un cumul de seulement 475 mm, soit 72 % du cumul saisonnier. Leur structure spatiale reste bien définie, et comme pour les autre années, elle est représentée par un variogramme climatologique de type exponentiel avec cette fois une pépite non nulle, égale à 0,2 avec un coefficient de forme de 23, **figure 18**).

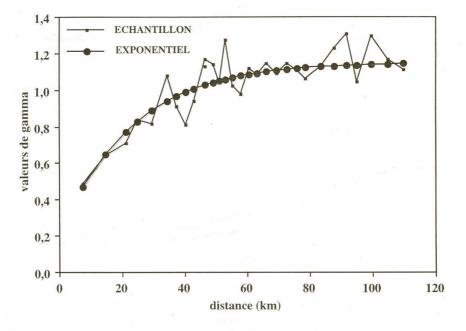


Figure 18: Variogramme climatologique des 22 épisodes de grande extension spatiale (au moins 80 % de stations en fonctionnement touchées) observés en 1998.

La comparaison de la répartition de la pluie aux différentes stations, au cours de la saison, permet aussi de visualiser le déficit pluviométrique et son évolution dans le temps. Pour cela on a comparé la station à cumul maximal, Niamey IRI - 1043,9 mm (centre de la zone) avec 1 station fortement déficitaire Alkama - 495,7 mm (nord de la zone).

Pour la station d'Alkama, on enregistre 45 jours de pluie (moyenne de 11 mm par jour) dont 30 jours avec un cumul supérieur à 1,0 mm. Pour la station de Niamey IRI, on enregistre 55 jours de pluie (moyenne de 19 mm par jour) dont 42 jours avec un cumul supérieur à 1,0 mm. La pluviosité s'est exprimé à Niamey IRI par un nombre plus grand d'événement mais aussi par une productivité 60 % plus forte qu'à Alkama. On peut aussi noter un retard d'environ 1 mois et demi sur les premières pluies à Alkama (**figure 19**).

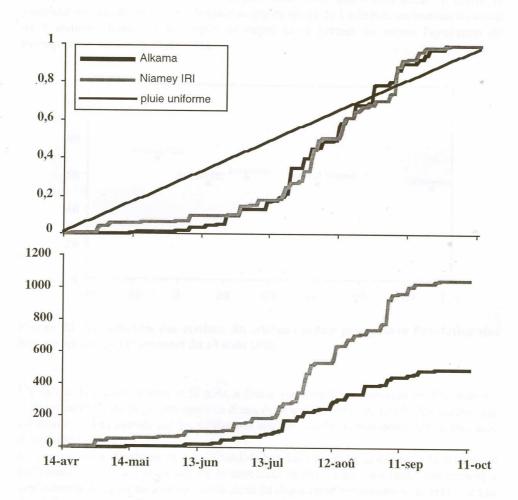


Figure 19: Comparaison de l'évolution du cumul pluviométrique entre Alkama et Niamey IRI entre le 15 avril et le 15 octobre: a) cumul normé et comparaison avec une pluie théorique uniforme;

b) cumul non normé.

3.3 Petits pas de temps

La base de données spatialisées dont on dispose, permet de travailler à un pas de temps minimal de 5 minutes. On peut donc étudier avec une résolution relativement fine d'une part, la propagation des systèmes précipitants sur le degré carré et, d'autre part, la déformation du hyétogramme aux différentes stations touchées.

Durant la saison 1998, on a recensé de nombreux systèmes convectifs de mésoéchelle qui sont passés au dessus du degré carré, dont un certain nombre ont montré une structure organisée comparable à celle d'une ligne de grain (marquage net d'un front nord-sud se déplaçant vers l'est à la vitesse de déplacement d'environ 40-60 km.h⁻¹). Outre la visualisation spatiale de la ligne de grain au pas de temps de 5 minutes, un transect est-ouest de 5 stations disposées au centre du degré carré permet de suivre l'évolution du hyétogramme stationnel (**figure 20**).

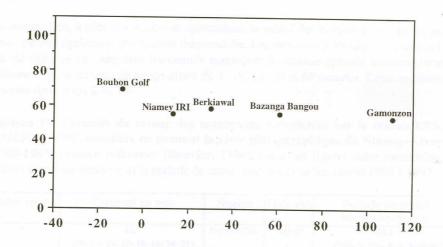


Figure 20: Localisation des stations du transect utilisé pour suivre l'évolution des hyétogrammes de l'événement du 13 août 1998.

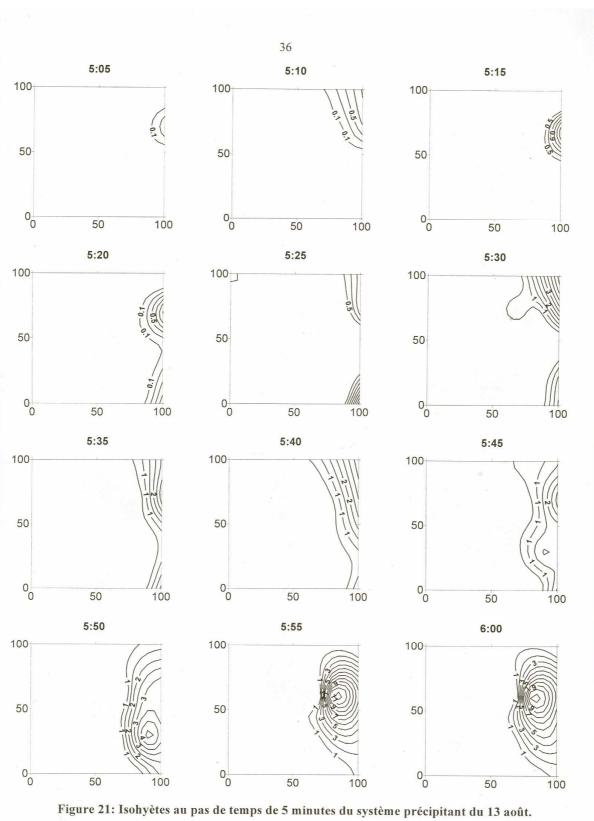
L'épisode choisi, qui se situe le 13 août, a donné une lame d'eau moyenne de 37,8 mm sur le degré carré (3ème plus forte quantité d'eau de la saison 1998), et 100 % des stations ont été touchées. Les cumuls sur les différentes stations s'échelonnent entre 1,0 et 76,5 mm (Fandouberi - n°9).

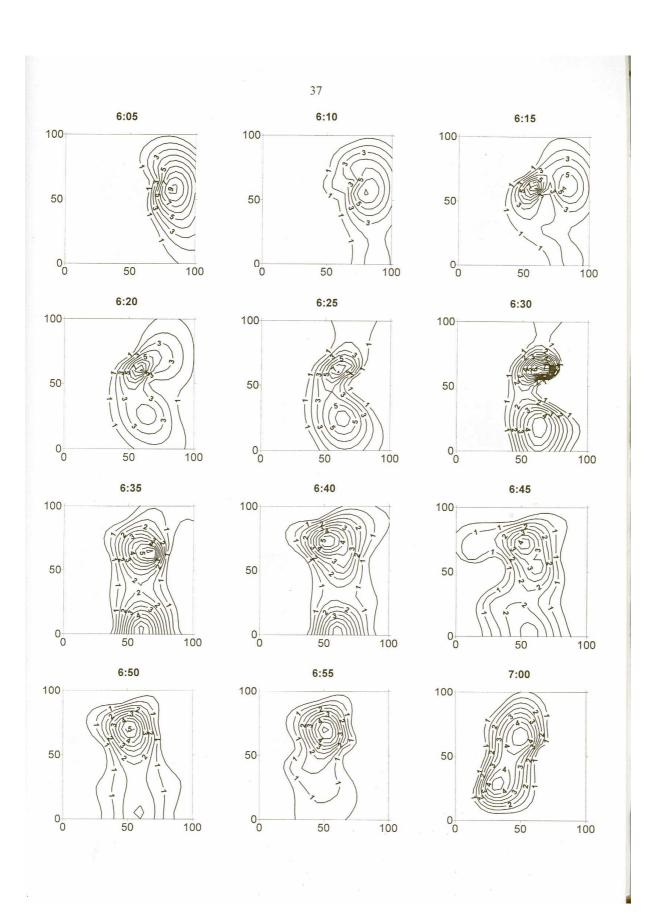
La convection a abordé le réseau EPSAT-Niger dans sa partie nord-est, à la station de Kaligorou (n° 61), sa durée totale sur la zone a été de 6h10, mais on a étudié simplement le déplacement de la partie frontale sur la zone du degré carré sensus-stricto et cela, sur une durée d'environ 3h35 (**figures 21, 22**).

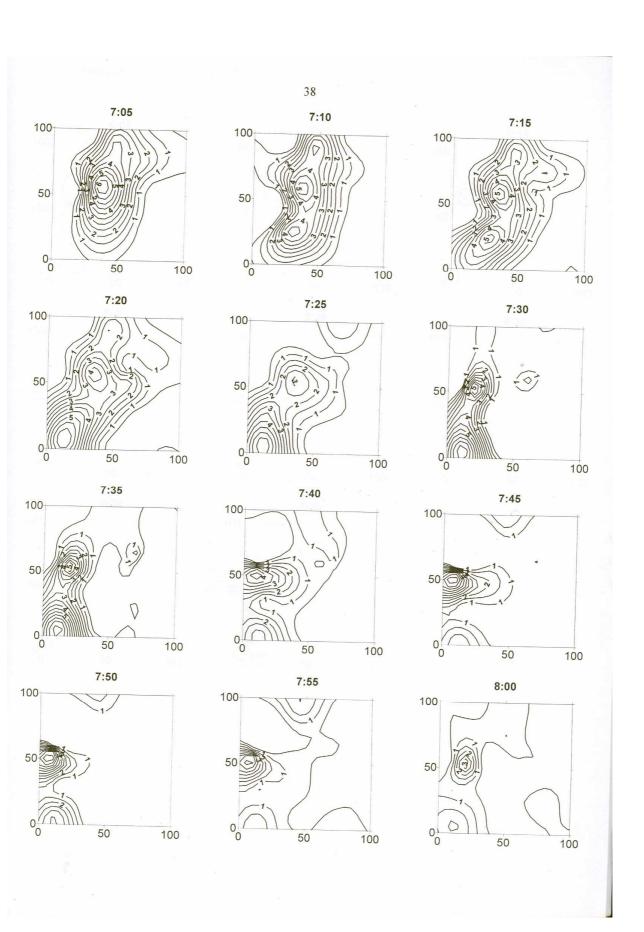
Le front a touché le degré carré à 5h05 du matin sur le côté est et 15 minutes après il va couvrir tout l'est de la zone. Il va rester stationnaire durant les 15 minutes suivantes puis la propagation du front va se poursuivre vers l'ouest. D'une cellule convective le front va

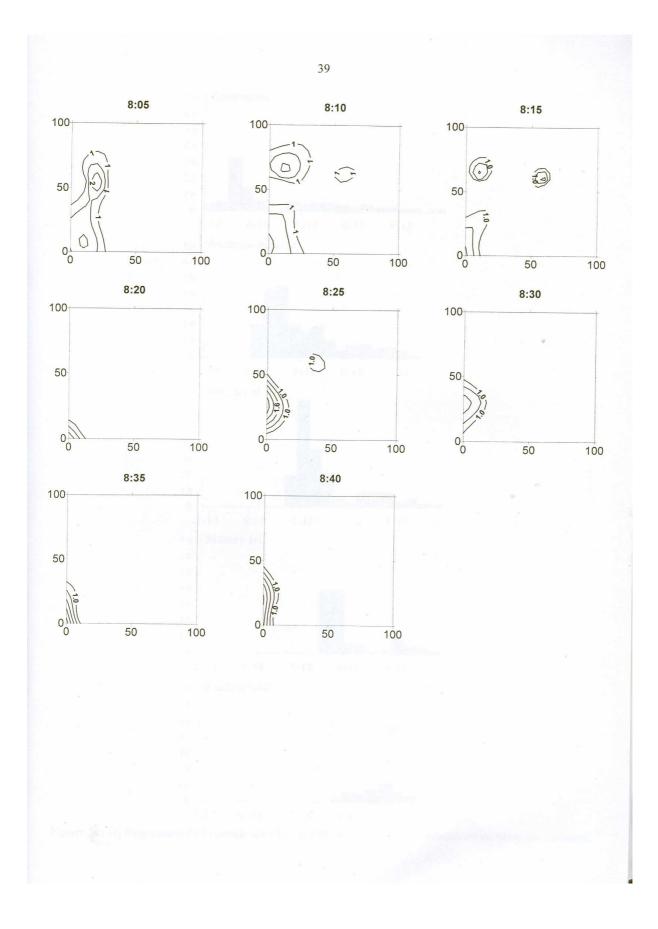
passer à deux cellule bien visibles très actives apportant jusqu'à 6 mm en 5 minutes soit une intensité de 72 mm.h⁻¹. A 7h40, le front a atteint la limite ouest, mais pendant près d'une heure la partie arrière du front va de nouveau rester stationnaire. C'est vers 8h40 que l'on note la disparition effective du front de la zone du degré carré. La partie stratiforme du système, non représentée sur les cartes d'isohyètes, sera détectée par le réseau jusqu'à 12h10, mais son apport reste faible, 10 à 20 % du cumul stationnel, pour l'ensemble des stations (excepté Boubon Golf). Le front a traversé le degré carré en 3 heures 35 minutes, soit à une vitesse moyenne d'environ 30 km.h⁻¹. Les hyétogrammes (pas de temps 15 minutes) sur le transect retracent bien le sens du déplacement du système (front et début de traîne). On ne note pas de véritable conservation de la durée de passage du front d'une part et de la forme du hyétogramme d'autre part aux 5 stations et cela d'autant plus à la station la plus à l'ouest où semble t-il le système s'est affaissé. Les cumuls totaux de l'épisode et les cumuls sur les 3h35 correspondant au passage du front pour les 5 stations sont respectivement d'est en ouest de 26,5 mm (24,5 mm), 53,5 mm (50,2 mm), 47,5 mm (42,2 mm), 29,5 mm (23,0 mm) et 12,5 mm (5,2 mm).

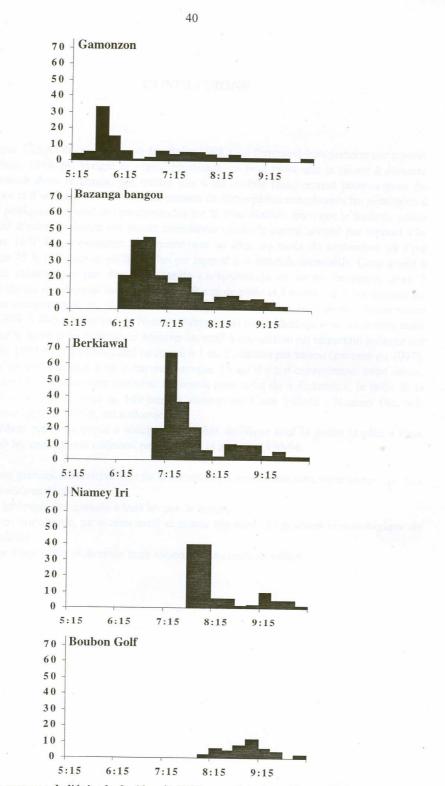
En dernier lieu, à côté des études de dynamique, le calcul des cumuls sur de petits pas de temps permet également une analyse fréquentielle. Les maximums absolus de la saison 1998 ont été calculés en compilant les cumuls maximaux de chaque épisode majeurs (issus du **tableau 2**) pour des pas de temps allant de 5, 10, 15, 30 et 60 minutes. Cette synthèse est reportée dans le **tableau 10**.


NIGER en 1998, calculées en prenant la série pluviographique de Niamey-Aéroport
(1946-1983) comme référence (Bouvier, 1986). On a fait figurer entre parenthèse, les
valeurs du cumul maximal et la période de retour associée pour les années 1990 à 1997.


Tableau 10: Périodes de retour des maximums enregistrés sur le réseau EPSAT-


Durée en mn	Quantité en mm	Station	Date-évt	Période de retour série Niamey-Aéroport
5	22,1 (30- 17- 29- 15- 15- 16- 16- 21)	Debere Gati	03/08	25,3 (200- 7- 166- 4- 3- 5- 5- 4)
10	42,8 (39-31-38-27-27-32-29-33)	Debere Gati	03/08	923,7 (150- 28- 224- 11- 12- 38- 17- 19)
15	60,4 (52- 41- 42- 39- 40- 44- 40- 36)	Debere Gati	03/08	2258,0 (331- 32- 33- 40- 20- 24- 53- 24)
30	100,7 (66- 52- 63- 60- 76- 54- 64- 59)	Debere Gati	03/08	4188,0 (50- 9- 30- 22- 160- 11- 35- 42- 35)
60	111,8 (75- 85- 74- 81- 109-76- 88- 86)	Debere Gati	03/08	223,1 (20- 34 -16 -25 -180- 17- 42- 42)
sur l'averse	134,0 mm en 10h40' (102-162- 92- 95-120- 89-101- 99)	Guilahel	06/09	


On a comparé les périodes de retour observées en 1998, à différents pas de temps, avec celles obtenues pour les années 1990-97. A la vue de ce tableau, on peut émettre quelques remarques. Au pas de temps de l'événement, la quantité maximale de pluie enregistrée d'une année sur l'autre, peut varier du simple au double. Pour des pas de temps plus petits la différence est beaucoup plus faible, sauf pour le pas de temps de 5 minutes. Les fortes


intensité enregistrées au pas de temps de 10 à 30 minutes donnent des périodes de retour supérieurs au millénaire et on peut penser que ce calcul est sûrement entaché d'une certaine erreur d'autant plus que l'on travaille uniquement avec une station de référence et moins de 40 années de mesures.

CONCLUSIONS

4

Sur la zone EPSAT-Niger, la saison des pluies 1998 a été fortement excédentaire par rapport à la période 1968-94. Malgré ce cumul important, on peut noter que la saison a démarré normalement dans le temps, par contre elle s'est arrêtée relativement précocement fin septembre et d'une manière très brutale passant de fortes pluies enregistrées fin septembre à un arrêt pratiquement total des précipitations sur la zone étudiée. Bien que le mois de juillet et le mois d'août ont donné des pluies abondantes (mais de cumul normal par rapport à la moyenne 1950-89), l'excédent pluviométrique se situe au mois de septembre où l'on enregistre 75 % (75 mm) de pluie en plus par rapport à la normale mensuelle. Cette année a aussi été caractérisée par des événements exceptionnels en terme de cumul avec 3 événements qui ont dépassé localement les 100 mm de pluie et 8 stations qui ont dépassé ce seuil. Par comparaison, sur la période 1957-97, on a dénombré seulement 3 événements (1962, 1989, 1994) à la station de Niamey Aéroport. Il est évident qu'avec un réseau aussi dense que le notre la probabilité de dépasser ce seuil à une station est important puisque sur la période 1990-97, on a enregistré ce cumul à 1 ou 2 stations par saison (excepté en 1997), mais il s'agissait toujours d'un événement unique. Ce qu'il y a d'exceptionnel cette année, c'est le nombre d'événement concerné et surtout pour celui du 6 septembre, la taille de la zone qui a dépassé le seuil de 100 mm (5 stations sur l'axe Yillade - Niamey IRI, soit environ une ligne de 90 km, est concernée).

Cet excédent pluviométrique a touché l'ensemble du Niger sauf la partie la plus à l'est (Diffa) où les cumuls sont normaux par rapport à la période 1950-94.

Les autres grandes caractéristiques de la climatologie sahélienne sont, cette année une fois de plus, mises en évidence :

- grande hétérogénéité spatiale à tous les pas de temps,

- inversion importante, au niveau local et même régional, du gradient climatologique de grande échelle,

- présence d'une petite sécheresse intra-saisonnière au mois de juillet.

REFERENCES

Bouvier, C., 1986: Etude du ruissellement urbain à Niamey, tome 3, Interprétation des données. Rapport général de convention ORSTOM/ MRH-DRE/ CIEH, 106p.

Goutorbe J.P., T. Lebel, A. Tinga, P. Bessemoulin, J. Brouwer, H. Dolman, E.T. Engman, J.H.C. Gash, M. Hoepffner, P. Kabat, Y.H. Kerr, B. Monteny, S. Prince, F. Saïd, P. Sellers, J. Wallace, 1994: HAPEX-SAHEL: a large-scale study of land-atmosphere interactions in the semi-arid tropics. Annales Geophysicae 12, p 53-64.

Lebel T., F. Cazenave, R. Gathelier, M. Gréard, R. Gualde, J. Kong, T. Valero, 1991: EPSAT-NIGER, Rapport de campagne 1990, ORSTOM-DMN, 65p.

Simpson J., Adler, R.F. and North G.R., 1988: A proposed Tropical Measuring Mission (TRMM) satellite. Bull. Am. Met. Soc. 69, p. 278-295.

Taupin J.D., A. Amani and T. Lebel, 1993a: Small scale spatial variability of the annual rainfall in the Sahel in: Bolle H.- J., Feddes, R.A. and Kalma, J. (Editors). Exchange Processes at the Land Surface for a Range of Space and Time Scales (Proceedings of the Yokohama.Symposium, july 1993). IAHS Publ. N° 212, p. 563-602.

Taupin J.D., T. Lebel, F. Cazenave, F. Chiron, R. Gathelier, M. Gréard, R. Gualde, J. Kong, T. Valero, 1992: EPSAT-NIGER, Rapport de campagne 1991, ORSTOM-DMN, 82p.

Taupin J.D., T. Lebel, F. Cazenave, M. Gréard, J. Kong, J. Lecocq, M. Adamson, N. d'Amato, A. Ben Mohamed, 1993b: EPSAT-NIGER, Rapport de campagne 1992, ORSTOM-DMN, 91p.

Taupin J.D., E. Bonef, M. Gréard, O. Ponseel, 1995a: EPSAT-NIGER-ARCOL, Rapport de campagne 1993, ORSTOM-DMN, 101 p.

Taupin J.D., E. Bonef, J. Robin, 1995b: EPSAT-NIGER- Suivi à long terme, Rapport de campagne 1994, ORSTOM-DMN, 81 p.

Taupin J.D., C. Laroche et J. Robin, 1996. EPSAT-NIGER suivi à long terme, Rapport de campagne 1995, ORSTOM-DMN, 82p.

Taupin J.D. et J. Robin, 1997. EPSAT-NIGER suivi à long terme, Rapport de campagne 1996, ORSTOM-DMN, 74p.

Taupin J.D. et J. Robin, 1999. EPSAT-NIGER suivi à long terme, Rapport de campagne 1997, ORSTOM-DMN, 62p.

A-1.1

ANNEXE 1. GESTION DU RESEAU DE PLUVIOGRAPHES ET INVENTAIRE DES PANNES

Coût de fonctionnement de la campagne 98

Chapitre 690

-Petit matériel	4.000 FF
(réinstallation-installation)	4.000 FF
- Batteries et régulateurs	
- Carburant-Essence-Gasoil-Huile	33.000 FF
- Déplacement personnel local (164 jours de tournées)	10.500 FF
- Photocopie-papetterie-disquette-téléphone	6.000 FF
- Maintenance informatique	3.000 FF
Total	60.500 FF

Chapitre 644

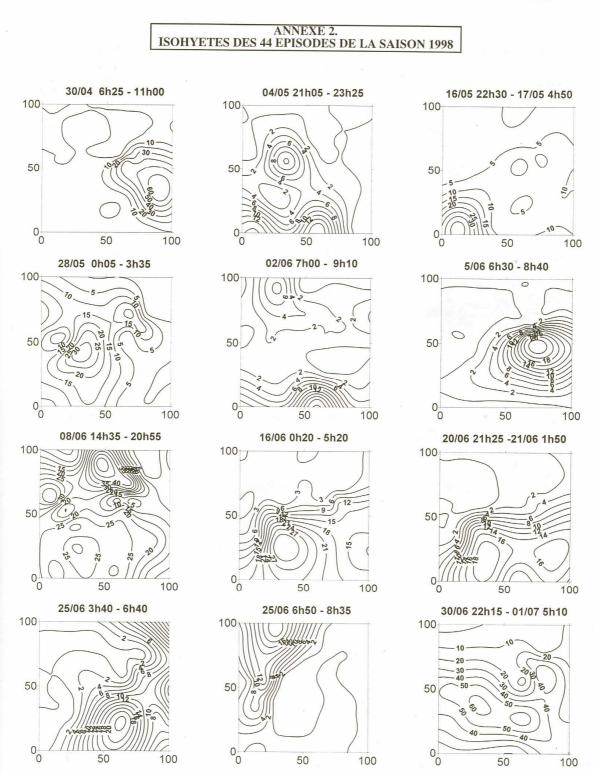
Gardiennage des stations

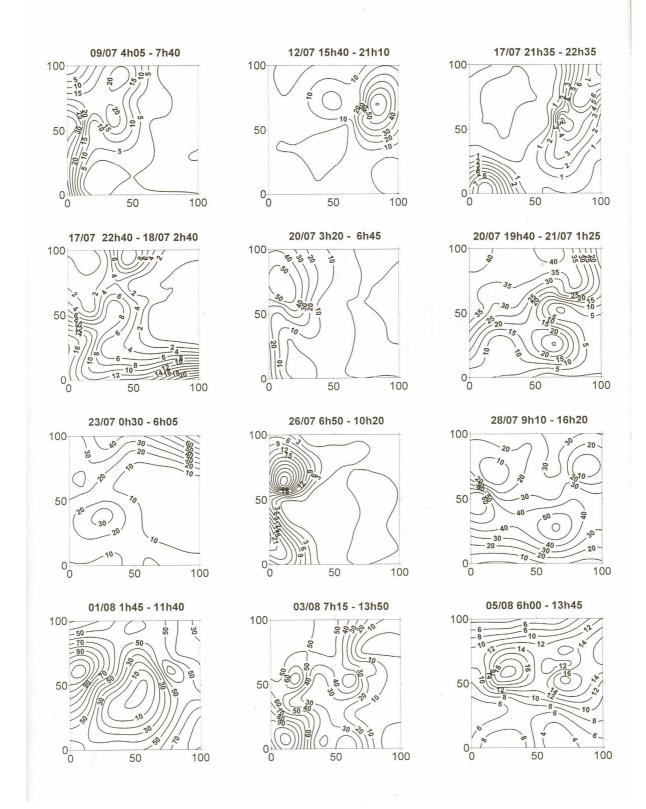
24.000 FF

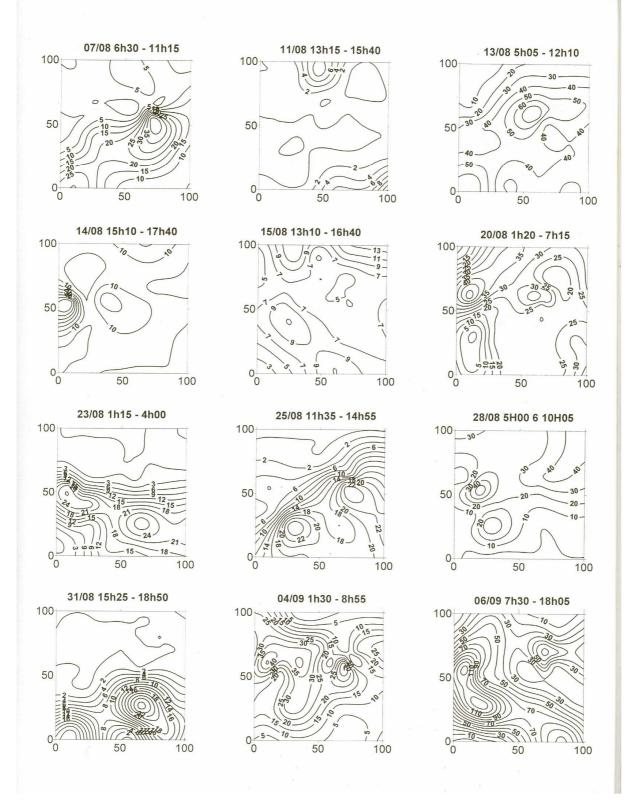
Au cours de la saison 1998, les équipes de terrain ont effectué 262 jours de tournées pour les réinstallations, les nouvelles installations, les visites de contrôle et d'entretien, le démontage des stations, ce qui représente 57.000 Kms.

Les réinstallations ont débuté le 26.03.1998 (KAFINA) La fin du démontage a eu lieu le 27.10.1998 (BOLOLADIE). Jours de fonctionnement des stations :

Jours de fonctionnement	7136
Jours de panne	117
Jours d'enregistrement	7019
Soit un taux de panne de	1,64 %


Causes des pannes en détail


entonnoir bouché	
augets bloqués	7
vandalisme	
Alimentation	
vol panneau solaire	22
batterie défectueuse	77
Enregistreur	
œdipe défectueux	
cartouche défectueuse	11
Total	117


Causes des pannes	Nombre de jours	% des pannes
Pluvio	7	6,0
Alimentation	99	84,6
Enregistreur	11	9,4

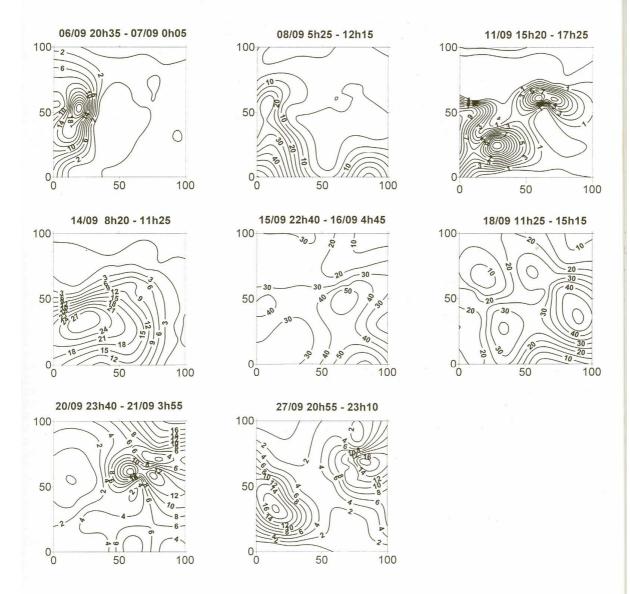

Station	Jours	Jours	Jours	%Jours	CAUSES PANNES
	fonctionnement	pannes	enregistrés	pannes	
		-			
Alkama	189	0	189	0,0	
Banizoumbou	198	0	198	0,0	18 A
Bazanga	198	0	198	0,0	
Beri Koira	187	0	187	0,0	1 1 1 No.
Berkiawel	185	0	185	0,0	
Bogdjottou	208	0	208	0,0	
Bololadie	208	0	208	0,0	
Boubon	199	25	174	12,5	batterie H.S.
Darey	189	6	183	3,2	cartouche H.S.
Debere Gati	208	0	208	0,0	refailer is the
			-		
Fandou Beri	198	5	193	2,5	cartouche H.S.
Gamonzon	194	0	194	0,0	
Gardama	189	17	172	9,0	vol panneau solaire
Gorou Goussa	189	0	189	0,0	
Guilahel	208	0	208	0,0	
Hama Jachere	198	5	193	2.5	vol panneau solaire
Harikanassou	194	0	194	0,0	
IH Jachere	206	0	206	0,0	
Kafina	200	52	155	25.1	batterie H.S.
Kaligorou	189	0	189	0,0	
ixangorou		2.005			
Kare	208	0	208	0,0	100 - 20 A
Kokorbe Fandou	189	7	182	3,7	faux contact aux augets
Kollo	207	0	207	0,0	
Koure Kobade	197	0	197	0,0	
Koure Sud	197	0	197	0,0	
Koyria	199	0	199	0,0	
Mali Djibo	198	0	198	0,0	
Massi Koubou	187	0	187	0,0	
Niamey Aeroport	207	0	207	0,0	
Niamey IRI	207	0	207	0,0	2 m
i numey ner					
Niamey Orstom	210	0	210	0,0	
Sandideyc	194	0	194	0,0	
Tanaberi	201	0	201	0,0	
Torodi	208	0	208	0,0	
Wankama	189	0	189	0,0	
Yillade	197	0	197	0,0	

Tableau A-1.1: Jours de fonctionnement et causes de pannes.

ANNEXE 3. TABLEAUX DE CUMULS JOURNALIERS

Pluies journalieres corrigees par les valeurs SEAU (de 6 h a 6 h) en 1/10 mm en 1998

Station : Alkama	
------------------	--

our	Jan		Fev	Mars		Avr	Mai	Juin	Juil	Aout	Sept	Oct	No
1.													
2.								5.					
3.										20.	96.		
4.									5.				
5.							. 9.		-	151.			
5.											308.		
7.									-	25.	5.		
3.								97.			162.		
9.													
).										5.			
ι.								5.		10.			
2.									196.	348.			
3.							. 32.			99.			
1.									25.	5.	5.	10	
5.								44.	-	125.	96.		
5.							. 23.						,
7.									105.				
3.									10.		112.		
9.										353.		-	
ο.								25.	95.	5.	147.		•
1.													•
2.									678.				
3.													
1.								226.		•			• -
5.						;		5.		31.			• -•
5.						3							
7.							. 5.			473.	101.		•
в.									246.	10.			
9.			~~~~					,	•				•
ο.								156.					•
1.		. ´		^	. '	~~~~		· · · · ·	261.		· · · · ·		• ^ ^ ⁄
um.							. 69.	563.	1621.	1660.	1032.	10	
ax.							. 32.	226.	678.	473.	308.	10	

Pluies journalieres corrigees par les valeurs SEAU (de 6 h a 6 h) en 1/10 mm en 1998 Station : Banizoumbou _____ Jour Jan Fev Mars Avr Mai Juin Juil Aout Sept Oct Nov _ _ _ _ _ 25. : · . 1 . • . 198. 380. 198. 380. 109. 154. . 449. . 323. 2. . . : ---3. 4. . . . ---5. • . : ---6. 5. 7. ---. . . • 8. ---9.

 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 10 . 2 11 12 • 13 : 14 15

 5.
 4.9.
 411.

 .
 5.
 5.

 .
 134.
 .

 .
 .
 342.

 .
 .
 315.

 .
 .
 152.

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 : ---42. 16 . • . . . 17 . • . • . . . ---139. . .

 5.
 152.

 20.
 5.

 212.
 --- ---
 18 . . 19 . . 2 20 10. • 21 22 23 : . 19. 24 19. 5. 25 182. 26 . . . : 27 . . . : . ***** 28 . · · 208. 471. 29 257. 30 . 31 . _ _ _ _ _ _ Cum. _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ 257. 182. 208. 471. 505. 449. 21. Max. . -----_ _ _ _ _ _ _

Station : Niamey IRI

en	1998

Jour	Jan	Fev	Mars	Avr	Mai	Juin	Juil	Aout	Sept	Oct	Nov
1.								457.			
2 .						15.					
3.								531.	369.		
4 .					173.			5.	52.		
5.						29.	5.	113.			
6									1481.		
7.											
8 .	-					283.	315.		314.		
9.				-					5.		
10.				-			10.		0.		•
11 .							±0.		69.		
12.				•				5.			
13.							•	292.			
L3.	-	•		•				711.	16.		•
	•		•	•	•	5.	5.	76.	394.		•
L5. L6.	•	•		•	20.		-	5.	5.		•
	•				20.	·	25.				•
L7 .	•					•		•			•
18 .	•			35.	45.				200.		
19.				•	•	· _ ·	297. 367.	383.			•
20.		•		-		5.		15.	•		•
21 .					•		15.				
22.					٠		201.	232.	10 . .		
23.								•	•		
24 .								•			·
25 .						70.		61.			
26.							124.				
27 .			•		45.				109.		
28.							562.	270.			
29.	. ´			333.					38.		
30.				24.		480.					
31 .			. ^		.^	· · · ·	729.	5.			. ^ ^ ^
Cum.				392.	283.	887.	2655.	3166.	3057.		
Max.					173.	480	729	711	1481		

Station : Koure Kobade en 1998

Jour		Fev		Mars		Avr		Mai	Juin	Juil	Aout	Sept	Oct		NC
								· · · · ·			198.	40.			
2.									99.		31.				
3.											5.	207.			
4.								25.			41.				
5.					۰.				5.		62.				
6.	 									99.		333.			
7 .											284.				
8.					- 1				24.		2011	20.		·	
9	 •		•		•		•	÷	5.			20.		•	
0.	 •		•		•		•	5.	5.		•	•	4	•	-
1.	 •		•		•			5.	109.	•	263.	15.			
	•		•		•		•	-	133.	-	267.	5.		•	
2	 •		•		•		•	100.	133.			э.		·	_
	 •		•		•		•	123.	•		147.	•		•	
- ·	 •		•				•	•			15.			•	-
	 •				•			•	193.	20.	72.	291.		•	-
					•		•	83.		•	5.	5.		•	-
7.					•		•			271.					
8.												103.			
9.											506.				
0.						1	0.	·	69.		5.	59.			
1.							5.		-						
2.										163.	197.	34.			
3.										5.					-
4 .															-
5	 		2							340.	273.				
6 .	 		÷						55.						
	 •		÷.					81.				5.			
	 •				•		•	01.	•	139.		5.		•	
		~~~~			•		5.	•	•	то <i>)</i> .		·		•	_
-	 • ,						5. 9.		. 422.		5.			•	_
• •	 •				•	4		17.	422.	716.	· · ·			•	~~~
1.	 		· .		·			4/. 		• 01\	.UT	•		•	
um.						6	9.	364.	1114.	1753.	2386.	1117.			
ax.	 						9.	123.	422.	716.	506.	333.			

Total sur la periode de fonctionnement = 6803

A-3.4

Station : Niamey Aeroport en 1998

our	Jan	Fev	Mars	Avr	Mai	Juin	Juil	Aout	Sept	Oct	No
1.								270.			
2.						24.					
3.								784.	175.		_
4.					129.				15.		-
5.							5.	184.			_
6.									1001.		_
7.								10.			_
8.						86.	.52.	±0.	. 95.		1
9.			2		•	00.	3.				
0.							5.	•	••	•	-
1.			* *			•		•	55.		-
2.						•	25.	5.	55.		-
3.			•		•	•	23.		•		-
5. 4.				• •		•	•	384.			-
	•		•	• •	•	•	•	74.	45.	11.	-
5 .	•		•	• •	•	92.	•	98.	346.	•	-
6.				• •	20.		•				-
7.	•			• •			15.				-
8.					20.			-	128.		-
9.			•				418.	207.			-
0.							280.	10.			-
1.	· · ·		•				39.	•	1		-
2 .							133.	113.	÷.		-
3.											_
4.											-
5.						135.		54.			_
6.							50.	51.			_
7.					60.	•			80.		
8.				•	00.		273.	575.	00.		_
9.		~~~~~	•	 . 319.				575.	100		-
0.	•					476.			102.		-
1.			•	. 10.	• ,	4/0.	450.	• • •			~~
⊥ . 				• •		·	450.			• • • •	
um.			•	. 329.	229.	813.	1743.	2768.	2042.	11.	
ax.				. 319.	129.	476	450.	784.	1001.	11.	

Station : Niamey ORSTOM en 1998

Jour	Jan		Fev		Mars		Avr	Mai	Juin		Aout	Sept	Oct	NC
1.										4.	512.			
2.							- · · ·		10.					
3.		8				•					520.	420.		
4.								158.				40.		
5.									50.	26.	113.			
6.				•						10.		1437.		
7.									• •		10.	5.		
8.									404.	270.		290.		
9.											-			
0.				•									*	
1.											10.			
2 .														· 
3.								5.		5.	182.			
4.											326.	10.		
5.										5.	65.	285.		·
6.								29.			5.			•
7.										19.	0.	•		•
8.						2	11.	40.		25.	·	135.		•
9.										475.	494	100.		•
0.										335.	21.			
1.										10.	51.			
2.										278.	135.			
3.										270.	100.			
4 .				j.								*: :•) 22		
5 .		<u> </u>		ĵ.					. 88		48.			
6.									00.	291.	10.	•		•
7							•	100.			•	72.		·
8 .				<u>.</u>				100.		285.	150.	12.		•
9.		. ^ ^	~~~~				315.				150.	75.		
0.			~~~~				30	•	389.					•
1.		. ^ ^				. ^ /	30.	.^		755.	.^			
um.		•		•			356.	332.	941.	2793.	2591.	2769.		
ax.							315.	158.	404.		520.	1400		

Total sur la periode de fonctionnement = 9782

A-3.6

Station	:	Torodi	er	n	1998

1 . 2 . 3 . 4 . 5 .		· · · · · ·		 								
3. 4. 5.				 					613.			
4.5.				 			24.		25.			
5.									136.	150.	-	
						61.	•		130.	206.		
					•	01.	•		35.			
			•	 •	•	•	•	•	35.	123.		
7				 ·	•	•	•	•		180.	•	
		•		 •	٠	•	· ·		35.			
<b>·</b> ·			•	 •	•		39.			237.		
		•	•	•	•		•	227.		5.	e .	
10 . · 11 . ·				 •	•			25.		•		
		•		 		•	•	15.	81.	119.		
12		·	•			•	•	109.	•	5.		
13 . •				 •		•			242.			
14 . •									337.	176.	14.	
							64.	178.	76.	152.		
16 . •						98.						
17 . •								84.				
18 . •										28.		
19					9.			287.	. 227.	20.		
20							74.	ACCESSED A LEAD	50.	9.		
21							, <u> </u>	007.	50.	2.	•	
22					•			124.	360.	24		
			•			•	•	5.	5.	24.		
			•	·	•	•	•		э.			
	1		٠	•		•	10.	_·	105			
			•	 •		•	10.	5.	195.			
			•	 •			•	25.	•	•		
						73.	•		•			
		• • • • • •				•		60.	20.			
		•		 ·	•	•	•		•			
		•		 ·	75.	•	416.		· ·			
31			· ·	 	^^·	5.^	416.	88.	180.'			~~~/
Cum.					84.	237.	627.	1899.	2617.	1414.	35.	
lax.				 	75.	98.	416	667	613.	237.	21.	

### ANNEXE 4. CUMULS MENSUELS

Tableau A-4.1: Cumuls mensuels enregistrés aux 36 stations du réseau (cône de réception 1,50 m au-dessus du sol) pour les mois d'avril à octobre 1998.

Station	n° epsat	avril	mai	juin	juillet	août	septembre	octobre
Alkama	10	0.0	6.0					
Banizoumbou	43	0,0	6,9	56,3	162,1	166,0	103,2	1,0
	11	25,7	36,8	47,7	150,4	223,3	213,2	2,1
Bazanga Bangou	5	38,0	27,5	64,8	58,9	237,1	152,4	0,0
Beri Koira	21	1,0	29,6	59,9	125,6	193,3	125,3	1,5
Berkiawel	28	5,2	47,0	70,1	162,2	205,7	159,2	0,5
Bogdjottou	412	10,8	23,0	53,3	241,8	259,7	195,3	12,0
Bololadie	84	5,3	24,1	81,5	263,8	254,1	179,6	11,0
Boubon Golf	85	16,9	33,5	lacune	lacune	206,8	119,9	0,5
Darey	18	7,3	11,8	58,1	166,0	159,5	148,4	0,5
Debere Gati	25	8,1	68,3	114,4	114,8	342,5	169,9	0,5
Fandou Beri	9	5,9	50,9	38,5	75,9	240,2	153,4	0,3
Gamonzon	34	27,2	17,7	92,1	125,3	162,9	134,6	1,0
Gardana Kouara	50	0,0	14,0	lacune	lacune	146,2	133,1	0,0
Gorou Goussa	80	6,4	16,1	38,0	260,5	127,8	140,6	0,0
Guilahel	49	4,1	38,6	95,2	142,6	179,8	308,9	0,0
Hama jachère	411	40,7	39,9	84,4	194,7	211,1	190,4	4,8
Harikanassou	41	66,8	9,8	114,5	129,0	183,4	137,5	1,0
IH Jachere hapex 1	105	3,7	32,6	126,2	97,4	249,6	302,1	5,2
Kafina	413	0,0	18,9	. 20,1	lacune	lacune	91,9	0,0
Kaligorou	61	0,5	41,1	80,1	96,5	181,6	191,0	0.0
Kare	29	15,8	38,0	114,2	69,3	211,6	141,2	0,5
Kokorbe Fandou	73	0,0	12,4	23,2	189,5	153.7	67,6	4,8
Kollo	54	6,6	45,6	132,7	157,1	179.5	228,9	11,2
Koure Kobade	26	6,9	36,4	111,4	175,3	238,6	111.7	0,0
Koure Sud	51	8,7	32,5	169,6	128,2	209,8	184,8	1.3
Koyria	82	5,9	37,1	37,4	207.7	140,7	162,2	6,0
Mali Djibo	269	29,1	43,1	49,9	168,7	216.7	200,3	0,8
Massi Koubou	78	0,0	3,8	73,9	208,2	179.0	101,0	0,0
Viamey Aeroport	94	32,9	22,9	81,3	174,3	276,8	204,2	1,1
Niamey IRI	83	39,2	28,3	88.7	265,5	316,6	305.7	0.0
Viamey ORSTOM	70	35,6	33,2	94,1	279.3	259,1	276,9	0,0
Sandideye	57	8,4	10,1	113.5	152.2	150,5	99,8	0,0
Tanaberi	32	2,5	36,9	162,0	106,5	227.8	153,0	0,0
Forodi	86	8,4	23,7	62,7	189,9	261,7	141,4	3,5
Wankama	116	0,0	27,2	95,6	146,0	146,0	139,5	1,5
Yillade	35	6,2	32,9	130,1	161,5	140,0	237.5	1,5

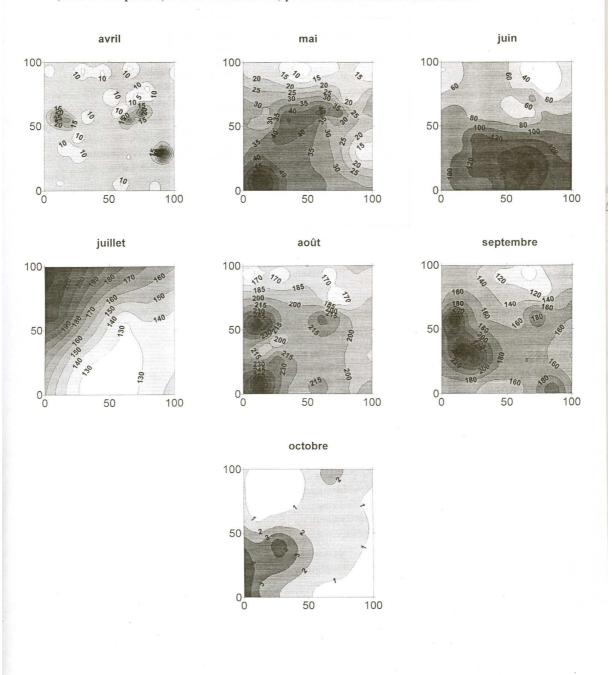



Figure A-4.1: Cartes mensuelles d'isohyètes obtenues par krigeage des 36 stations du réseau (cône de réception 1,50 m au-dessus du sol) pour les mois d'avril à octobre 1998.

A-4.2

### ANNEXE 5. CUMULS SAISONNIERS SUR 15 POSTES DU RESEAU DU NIGER

long.	lat.	mm	station
ALC: NO	· · · · · · · · · · · · · · · · · · ·	11.27 Heyring	
7.98	16.97	196,8	AGADEZ
12.92	18.68	6,1	BILMA
5.28	13.80	531,7	BIRNI N KONNI
12.62	13.42	293,6	DIFFA
3.45	11.88	878,9	GAYA
10.30	13.98	374,6	GOURE
8.93	12.98	692,5	MAGARIA
11.98	13.23	445.5	MAINE-SOROA
7.08	13.47	550,7	MARADI AERO
2.15	13.48	845,8	NIAMEY AEROPORT
2.13	13.50	968,0	NIAMEY ORSTOM
13.12	14.25	260,2	N GUIGMI
3.30	14.90	480,2	TAHOUA
1.45	14.20	582,6	TILLABERY
8.98	13.78	544,8	ZINDER

A-5.1

ANNEXE 6. LISTE DES VARIOGRAMMES MODELISES

### 1- Variogrammes par evenements

No evenement	Modele	Pepite	Portee	Palier
tion and the second	sphérique	50	30	250
2	sphérique	0	30	230
3	sphérique		130	50
4		0		
	sphérique	0	20	80
5	linéaire	0	0,2	
6	sphérique	0	20	20
7	sphérique	0	10	120
8	sphérique	0	60	80
9	sphérique	0	70	45
10	gaussien	0	35	75
11	sphérique	0	60	27
12	sphérique	0	50	380
13	linéaire	0	2,5	
14	sphérique	0	30	300
15	sphérique	0	25	7,5
16	linéaire	0	0,8	1,5
17	linéaire	0	7	
17	linéaire	50	2,5	
		0	30	250
19	gaussien			250
20	sphérique	0	30	50
21	sphérique	0	40	200
22	sphérique	0	30	800
23	linéaire	250	8	
24	sphérique	0	40	22
25	sphérique	0	10	80
26	linéaire	0	0,2	
27	sphérique	0	50	30
28	sphérique	0	10	200
29	sphérique	0	20	6
30	sphérique	0	30	120
31	sphérique	0	60	125
32	linéaire	10	0,8	125
33	sphérique	0	70	300
34		0	50	60
	sphérique	-	-	(Co. 197)
35	sphérique	0	10	150
36	sphérique	0	50	1750
37	sphérique	0	50	40
38	linéaire	30	2,3	
39	sphérique	0	10	15
40	sphérique	0	70	18
41	sphérique	0	25	150
42	sphérique	0	50	100
43	sphérique	0	10	27
44	sphérique	0	30	32

A-6.1

### 2- Variogrammes decadaires

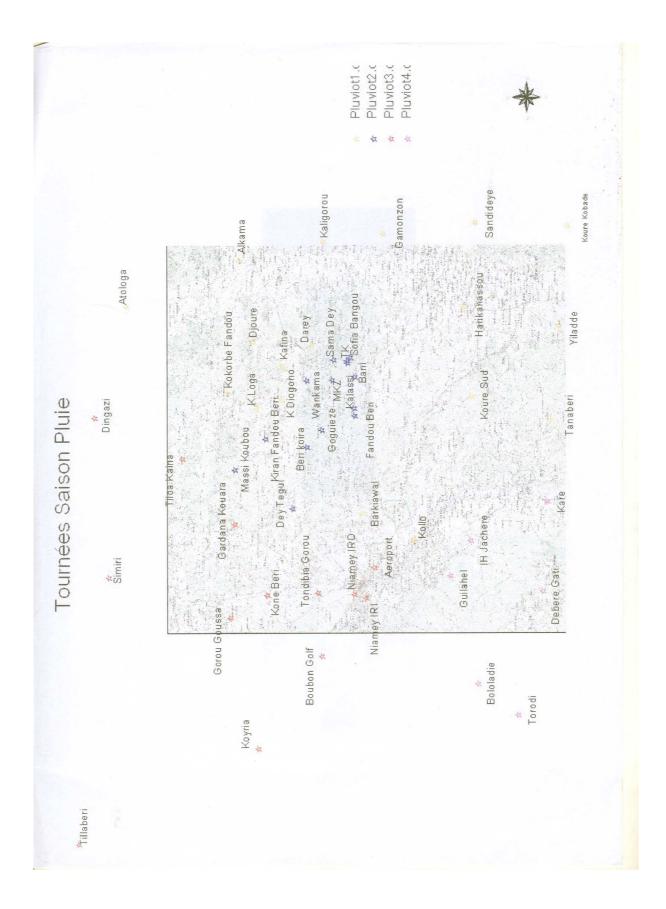
No decade	Modele	Pepite	Portee	Palier
climatique	linéaire	0,8	0,003	
1 11-20/04	sphérique	0	70	90
2 21-30/04	sphérique	0	30	1250
3 01-10/05	sphérique	0	10	90
4 11-20/05	sphérique	0	35	220
5 21-31/05	sphérique	0	15	250
6 01-10/06	sphérique	. 0	15	500
7 11-20/06	sphérique	0	75	1200
8 21-30/06	sphérique	0	40	1400
9 01-10/07	linéaire	300	15	
10 11-20/07	linéaire	500	45	
11 21-31/07	sphérique	0	10	4500
12 01-10/08	sphérique	0	10	1500
13 11-20/08	sphérique	0	40	1500
14 21-31/08	sphérique	0	10	3000
15 01-10/09	sphérique	0	50	10000
16 11-20/09	sphérique	0	20	600
17 21-30/09	sphérique	0	40	200
18 01-10/10	linéaire	2	0,1	

### **3- Variogrammes mensuels**

Mois	Modele	Pepite	Portee	Palier
Avril	sphérique	0	10	250
Mai	exponentiel	0	20	220
Juin	sphérique	0	70	1750
Juillet	linéaire	1800	15	
Aout	exponentiel	0	10	2000
Septembre	exponentiel	0	10	3700
octobre	linéaire	3	0,1	

### ANNEXE 7. LISTE DES FICHIERS CREES LORS DU TRAITEMENT DES DONNEES PLUVIOGRAPHIQUES

### Tableau A-7.1: Liste des fichiers .oe3, images cartouches.


alkama1	oe3	gardana4	oe3	koureko2	oe3
alkama2	oe3	gorougo l	oe3	koureko3	oe3
alkama3	oe3	gorougo2	oe3	koureko4	oe3
alkama4	oe3	gorougo3	oe3	kouresu1	oe3
banizou1	oe3	gorougo4	oe3	kouresu2	oe3
banizou2	oe3	gorougo5	oe3	kouresu3	oe3
banizou3	oe3	gorougo6	oe3	kouresu4	oe3
banizou4	oe3	guilahe1	oe3	kouresu5	oe3
bazanga1	oe3	guilahe2	oe3	koyria1	oe3
bazanga2	oe3	guilahe3	oe3	koyria2	oe3
bazanga3	oe3	guilahe4	oe3	koyria3	oe3
bazanga4	oe3	hajache 1	oe3	koyria4	oe3
berikoi1	oe3	hajache2	oe3	koyria5	oe3
berikoi2	oe3	hajache3	oe3	malidji1	oe3
berikoi3	oe3	hajache4	oe3	malidji2	oe3
berikoi4	oe3	hajache5	oe3	malidji3	oe3
	oe3	harikan1	oe3	malidji4	oe3
berkiaw1			oe3	massiko1	oe3
berkiaw2	oe3	harikan2		massiko2	oe3
berkiaw3	oe3	harikan3	oe3		
berkiaw4	oe3	harikan4	oe3	massiko3	oe3
bogdjot1	oe3	harikan5	oe3	massiko4	oe3
bogdjot2	oe3	ihjache1	003	niameyal	oe3
bogdjot3	oe3	ihjache2	oe3	niameya2	oe3
bogdjot4	oe3	ihjache3	oe3	niameya3	oe3
bololad1	oe3	ihjache4	oe3	niameya4	oe3
bololad2	oe3	iri1	oe3	niameya5	oe3
bololad3	oe3	iri2	oe3	orstoml	oe3
bololad4	oe3	iri3	oe3	orstom2	oe3
boubon1	oe3	iri4	oe3	orstom3	oe3
boubon2	oe3	kafina1	oe3	orstom4	oe3
boubon3	oe3	kafina2	oe3	sandide1	oe3
boubon4	oe3	kafina3	oe3	sandide2	oe3
darey 1	oe3	kafina4	oe3	sandide3	oe3
darey2	oe3	kafina5	oe3	sandide4	oe3
darey3	oe3	kaligor1	oe3	tanaber 1	oe3
darey4	oe3	kaligor2	oe3	tanaber2	oe3
debereg1	oe3	kaligor3	oe3	tanaber3	oe3
debereg2	oe3	kaligor4	oe3	tanaber4	oe3
debereg3	oe3	kare 1	oe3	torodi1	oe3
debereg4	oe3	kare2	oe3	torodi2	oe3
fandoub1	oe3	kare3	oe3	torodi3	oe3
fandoub2	oe3	kare4	oe3	torodi4	oe3
fandoub2	oe3	kokorbe1	oe3	wankama1	oe3
fandoub4	oe3	kokorbe2	oe3	wankama2	oe3
gamonzo1	oe3	kokorbe3	oe3	wankama3	oe3
gamonzo2	oe3	kokorbe4	oe3	wankama4	oe3
	oe3	kokorbe5	oe3	villade 1	oe3
gamonzo3 gamonzo4	oe3	kollo1	oe3	villade2	oe3
	oe3	kollo2	oe3	villade3	oe3
gamonzo4	oe3	kollo3	oe3	yillade4	oe3
gardana1	oes oes	kollo4	oe3	yillade5	oe3
gardana2	oe3	koureko1	oe3	ymades	005
gardana3	063	KUUIEKUI	005		

# Tableau A-7.2: Liste des fichiers .lab, images cartouches.

		inages c	al toucnes.			
alkama1	lab	gardana4	1.1			
alkama2	lab		inco	koureko		b
alkama3	lab	gorougo		koureko	3 lal	
alkama4	lab	gorougo2	2 lab	koureko4	l lal	-
banizou1		gorougo3		kouresu1	lat	
banizou2		gorougo4	lab	kouresu2		
banizou3		gorougo5	lab	kouresu3		
banizou4		gorougo6	lab	kouresu4	lab	
bazanga1	lab	guilahe1	lab	kouresu5	lab	
bazanga2		guilahe2	lab	koyria1	lab	
bazanga3		guilahe3	lab	koyria2	lab	
bazanga4		guilahe4	lab	koyria3	lab	
berikoi1	lab	hajache1	lab	koyria4	lab	
berikoi2	lab	hajache2	lab	koyria5	lab	
berikoi3	lab	hajache3	lab	malidji1		
berikoi4	lab	hajache4	lab	malidji2	lab	
	lab	hajache5	lab	malidji2 malidji3	lab	
berkiaw1	lab	harikan1	lab	malidji4	lab	
berkiaw2	lab	harikan2	lab		lab	
berkiaw3	lab	harikan3	lab	massiko1	lab	
berkiaw4	lab	harikan4	lab	massiko2	lab	
bogdjot1	lab	harikan5	lab	massiko3	lab	
bogdjot2	lab	ihjache1	lab	massiko4	lab	
bogdjot3	lab	ihjache2	lab	niameya1	lab	
bogdjot4	lab	ihjache3	lab	niameya2	lab	
bololad1	lab	ihjache4	lab	niameya3	lab	
bololad2	lab	iri1	lab	niameya4	lab	
bololad3	lab	iri2	lab	niameya5	lab	
bololad4	lab	iri3	lab	orstom1	lab	
boubon1	lab	iri4	1000 CT	orstom2	lab	
boubon2	lab	kafina1	lab	orstom3	lab	
boubon3	lab	kafina2	lab	orstom4	lab	
boubon4	lab	kafina3	lab	sandide1	lab	
darey1	lab	kafina4	lab	sandide2	lab	
darey2	lab	kafina5	lab	sandide3	lab	
darey3	lab		lab	sandide4	lab	
darey4	lab	kaligor1	lab	tanaber1	lab	
debereg 1	lab	kaligor2	lab	tanaber2	lab	
debereg2	lab	kaligor3	lab	tanaber3	lab	
debereg3	lab	kaligor4	lab	tanaber4	lab	
debereg4	lab	kare1	lab	torodi1	lab	
fandoub1	lab	kare2	lab	torodi2	lab	
fandoub2	lab	kare3	lab	torodi3	lab	
fandoub3	lab	kare4	lab	torodi4	lab	
fandoub4	lab	kokorbe1	lab	wankama1	lab	
gamonzo1	lab	kokorbe2	lab .	wankama2	lab	
gamonzo2	lab	kokorbe3	lab	wankama3	lab	
gamonzo3		kokorbe4	lab	wankama4	lab	
gamonzo4	lab	kokorbe5	lab	yillade1	lab	
gamonzo4	lab	kollo1	lab	yillade2	lab	
gardana1	lab	kollo2	lab	yillade3	lab	
gardana2	lab	kollo3	lab	yillade4	lab	
gardana3	lab	kollo4	lab	yillade5	lab	
Survailas	lab	koureko1	lab	,	140	

Tableau A-7.3: Liste des fichiers .txt, créés et gérés par BADINAGE, banque de données pluviographiques.

alkama	txt	hajache	txt	orstom	txt
banizou	txt	harikan	txt	sandide	txt
bazanga	txt	ihjache	txt	tanaber	txt
berikoi	txt	iri	txt	torodi	txt
berkiaw	txt	kafina	txt	wankama	txt
bogdjot	txt	kaligor	txt	yillade	txt
bololad	txt	kare	txt	5	
boubon	txt	kokorbe	txt		
darey	txt	kollo	txt		
debereg	txt	koureko	txt		
fandoub	txt	kouresu	txt		
gamonzo	txt	koyria	txt		
gardana	txt	malidji	txt		
gorougo	txt	massiko	txt		
guilahe	txt	niameya	txt		

