

EPSAT-NIGER SUIVI A LONG TERME

CAMPAGNE 1997

Jean Denis TAUPIN et Joseph ROBIN

janvier 1999

DMN

ORSTOM

EPSAT-NIGER SUIVI A LONG TERME CAMPAGNE 1997

Jean Denis TAUPIN et Joseph ROBIN

janvier 1999

ORSTOM

DMN

AVANT-PROPOS

Le dispositif du réseau pluviographique adopté en 1997 est la configuration minimale qui devrait être maintenue au moins jusque en 1999 dans le cadre de l'étude des précipitations sur la zone du degré carré d'HAPEX-Sahel (Goutorbe et al., 1994). Un seul ingénieur de l'ORSTOM reste opérationnel dans le cadre de la formation des techniciens de la DMN (Direction de la Météorologie du Niger) à la maintenance du réseau ainsi qu'au traitement préliminaire des données.

Trente-six pluviographes ont été maintenus pour une maille de base d'environ 25 km pour assurer le suivi pluviométrique à long terme du degré carré, dans le cadre, on peut l'espérer, du choix du futur site de validation en zone sahélienne du satellite micro-ondes TRMM (Tropical rainfall Measurement Mission, **Simpson et al., 1988**) qui a été lancé fin 1997. Le site central reste encore opérationnel, malgré une légère réduction, pour quelques études complémentaires dans le cadre de SALT (Savane A Long Terme) et du suivi de la nappe du CT3.

A partir de cette année, le rapport se veut moins dense, il rappellera les grandes caractéristiques pluviométriques de la saison déjà étudiées dans les rapports précédents (Lebel et al., 1991; Taupin et al., 1992, 1993b, 1995a, 1995b, 1996; Taupin et Robin, 1997) mais l'analyse préliminaire sera plus succincte et seule la modélisation des variogrammes aux échelles saisonnière, mensuelle et décadaire fera l'objet d'une étude détaillée.

Comme les années précédentes, un annuaire des pluies journalières enregistrées sur les 36 stations pourra être disponible auprès du centre ORSTOM de Niamey ou de Grenoble.

SOMMAIRE

1. Caractéristiques de	e la saison des pluies 1997	1
2. Le réseau de pluvi	ographes	15
3. Analyses prélimin	aires des données pluviographiques	. 23
4. Conclusions		38
Références		39
Annexe 1	Gestion du réseau de pluviographes	A1.1
Annexe 2	Isohyètes des cumuls par épisodes	A2.1
Annexe 3	Tableaux des cumuls journaliers	A3.1
Annexe 4	Cumuls mensuels	A4.1
Annexe 5	Cumuls saisonniers sur le reseau nigérien	A5.1
Annexe 6	Fonctions de structure au pas de temps de l'événement, de la décade et du mois	A6.1
Annexe 7	Listes des fichiers crées lors du traitement des données pluviographiques	A7.1

CARACTERISTIQUES DE LA SAISON DES PLUIES 1997 SUR LA REGION DE NIAMEY

En 1997, la saison est assez précoce car on note plusieurs événements (5) dès le mois de mars situés entre le 24 et le 31 mars. Toutes les stations installées à cette époque (10 sur 36) les enregistrent, il semble donc que la plupart des ces événements aient eu une extension spatiale au moins de la taille de la zone EPSAT. Le cumul sur le mois de mars bien que faible a quand même atteint près de 26 mm à Bololadie. Avril est en général sec sur la zone avec la présence d'un unique événement de faible quantité sur seulement 16 stations.

La saison des pluies va commencer véritablement au début du mois de mai avec des totaux mensuels pour les mois de mai, juin et juillet du même ordre que les années précédentes. On peut noter la présence au mois de juillet d'une petite sécheresse d'une semaine qu'on a eu déjà l'occasion de remarquer pour la période 90-96. Le mois d'août marque par contre la mise en place d'une sécheresse marquée tant dans le nombre d'événements beaucoup plus faible cette année, que dans les quantités, il a plu entre 2 et 5 fois moins aux stations qu'en année normale. Le mois de septembre montre des cumuls légèrement supérieurs aux années précédentes mais cela ne permet pas de combler le retard accumulé au mois d'août. On observe quelques pluies éparses au mois d'octobre, la dernière étant enregistrée le 29 octobre à Debere Gati. 1997 est donc marquée par une sécheresse comparable à celle mesurée la première année du dispositif complet sur la zone EPSAT-Niger (1990). La moyenne arithmétique sur l'ensemble des stations sur la période de référence (15 avril-15 octobre) est égale à 417,7 mm.

1.1 Distribution spatiale des cumuls saisonniers

La saison 1997 (période de référence choisie 15 avril-15 octobre), avec une moyenne estimée par krigeage de 417,3 mm, et un écart-type de 72,8 mm, apparaît comme une des années les plus déficitaires de la décade, mais elle est surtout remarquable par sa répartition très particulière des événements pluvieux. C'est une saison qui démarre tôt et qui finit tardivement mais avec la présence généralisée d'un creux pluviométrique durant le mois d'août qui apporte normalement 50 % des précipitations. On relève une moyenne sur la zone de 83,5 mm pour le mois d'août alors que pour les autres années la moyenne se situe entre 175 pour la plus mauvaise année (1990) et 300 mm pour l'année la plus excédentaire (1994). Par rapport à la période sèche enregistrée depuis 1968 dans la zone sahélienne (Niamey Aéroport choisie comme station de référence, environ 505 mm) on a donc un déficit de près de 88 mm et si l'on considère seulement la station de Niamey Aéroport (360,8 mm) on a donc un déficit de près de 144 mm.

Comme les années précédentes, la variabilité spatiale sur la zone reste importante, rapport égal à 2.1, les hauteurs saisonnières s'échelonnant entre 272,7 mm et 565,4 mm. La répartition spatiale des pluies montre des cumuls plus importants au sud qu'au nord, en

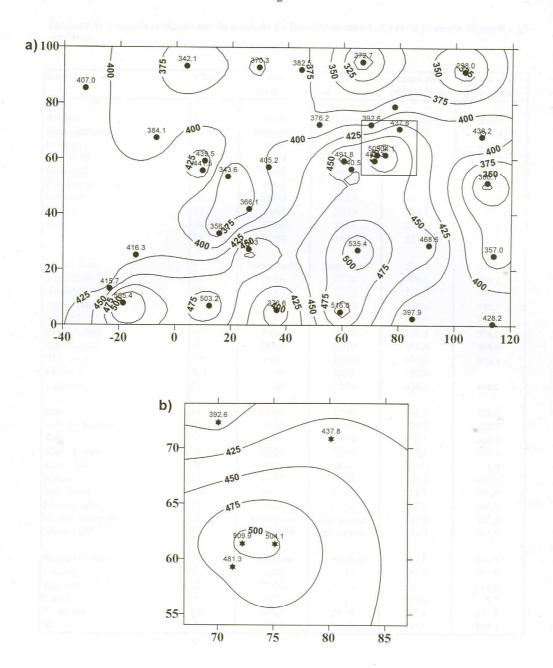


Figure 1: Isohyètes (mm) de la saison des pluies 1997 (15 avril - 15 octobre) sur le degré carré de Niamey. 36 stations (cumuls seau). Coordonnées en km; origine 2°E, 13°N.

a) zone d'étude complète ; b) zoom sur le site central.

Tableau 1: Cumuls mesurés sur la période de fonctionnement et sur la période 15 avril - 15 octobre.

Station	n°Epsat	date	date	cumul seau	cumul seau
	i i	installation	démontage	période totale	15/04-15/10
			22/10	200.0	200.0
Alkama	43	14/04	22/10	298,0	298,0
Banizoumbou	11	permanent	permanent	488,6	481,3
Bazanga	5	11/04	27/10	440,5	440,5
Beri Koira	21	09/04	24/10	376,2	376,2
Berkiawel	28	20/03	24/10	416,2	405,2
Bogdjottou	412	19/03	03/11	582,7	565,4
Bololadie	84	21/03	03/11	442,0	416,3
Boubon	. 85	04/04	25/10	384,1	384,1
Darey	18	10/04	23/10	437,8	437,8
Debere Gati	25	01/04	31/10	514,0	503,2
Fandou Beri	9	permanent	permanent	500,3	491,8
Gamonzon	34	08/04	29/10	306,6	306,1
Gardama	50	03/04	21/10	370,3	370,3
Gorou Goussa	80	03/04	21/10	342,1	342,1
Guilahel	49	01/04	31/10	356,0	356,0
Hama Jachere	411	24/03	27/10	508,8	504,1
Harikanassou	41	08/04	29/10	468,6	468,6
	105	01/04	31/10	494,3	494,3
IH Jachere	413	18/08	22/10	137,0	171,5
Kafina	1,00,00	14/04	22/10	436,2	436,2
Kaligorou	61	14/04	22/10	430,2	450,2
Kare	29	01/04	31/10	381,0	376,6
Kokorbe Fandou	73	10/04	23/10	272,7	³ 272,7
Kollo	54	02/04	30/10	366,1	366,1
Koure Kobade	26	07/04	28/10	462,6	428,2
Koure Sud	51	07/04	28/10	535,9	535,4
Kovria	82	04/04	25/10	409,2	407,0
Mali Djibo	269	24/03	27/10	514,1	509,9
Massi Koubou	78	09/04	24/10	382,5	382,5
Niamey Aeroport	94	permanent	permanent	360,8	343,6
	83	permanent	permanent	453.0	441,5
Niamey IRI	0.5	permanent	permanent	155,0	,5
Niamey Orstom	70	permanent	permanent	449,5	439,5
Sandideye	57	08/04	29/10	357,0	357,0
Tanaberi	32	02/04	30/10	516,0	516,0
Torodi	86	19/03	03/11	435,6	415,7
Wankama	116	10/04	23/10	392,6	392,6
Yillade	35	07/04	28/10	399,9	397,9

Tableau 2: Liste des 34 événements majeurs enregistrés en 1997 à partir de 36 stations.

Tableau 2: Liste des 34 évenements majeurs enregistres en 1997 a partir de 36 stations. Un événement majeur est comptabilisé dés lors que 30% (P) au moins des stations en fonctionnement (N) enregistrent une quantité de pluie supérieure à 1 mm. Les cumuls T sont exprimés en 1/10 mm ainsi que les quantités maximales de pluies enregistrées pendant l'événement en 5, 10, 15, 30, 60 minutes. Les nombres de taille réduites correspondent aux stations où l'on a relevé l'intensité maximale à un pas de temps donné pendant l'événement. i, j correspondent respectivement à la première et à la dernière station touchée. Le temps de passage de l'événement sur le degré carré est donné en minutes. La moyenne pluviométrique krigée par événement sur le degré carré est donnée en millimètre. krigée par événement, sur le degré carré, est donnée en millimètre.

No	debut	fin	N	P	i	j	5	10	15	30	60	T	Duree	moy. k
	C15 01 201	61.5 H 201	25	242	26	440	0.77		lu L			1		
1	6/5 a 0h30'	6/5 a 4h20'	35	34.3	26	412	37 26	52 26	65 26	80 26	110 26	130 26	235	1,2
2	24/ 5 a 14h40'	24/ 5 a 16h30'	35	37.1	41	94	87	134	158	197	205	205	115	3,2
1	24/ 3 a 141140	24/ 3 a 101130	33	37.1	71	74	84	84	84	29	29	203	113	3,2
3	28/5 a 9h30'	28/5 a 14h10'	34	70.6	73	82	87	159	226	349	390	450	285	6,5
				,,,,,	, ,	-	82	82	82	82	82	82	200	0,5
4	2/6 a 6h 5'	2/6 a 9h50'	34	70.6	61	29	81	145	198	332	445	445	230	11,0
							70	70	70	70	70	70		1,0
5	10/6 a 22h45'	11/6 a 5h20'	35	82.9	43	86	82	135	202	360	405	410	400	8,5
							32	32	32	32	32	32	4	-
6	13/6 a 6h10'	13/6 a 13h25'	35	100.0	43	86	89	177	262	416	662	845	440	35,1
							51	51	51	51	51	41		
7	21/6 a 5h25'	21/6 a 9h15'	35	62.9	43	29	56	103	134	215	290	305	235	4,4
							43	43	43	43	43	43		
8	23/6 a 6h15'	23/6 a 9h25'	35	71.4	411	86	103	165	226	310	315	325	195	8,1
							25	25	25	25	25	25		
9	30/6 a 4h50'	30/6 a 8h40'	34	73.5	57	32	76	119	151	201	242	275	235	8,7
							26	41	105	49	26	26		
10	7/7 a 4h40'	7/7 a 11h40'	32	100.0	57	412	117	208	305	497	645	885	425	49,1
							105	105	105	105	28	116		
11	10/7 a 7h15'	10/7 a 11h55'	32	100.0	57	86	114	208	274	364	445	465	285	16,5
							85	412	412	412	412	412		
12	18/7 a 11h 5'	18/7 a 16h25'	30	100.0	57	82	102	160	190	255	265	280	325	10,0
							82	82	82	82	82	82		
13	20/7 a 2h15'	20/7 a 6h30'	34	67.6	57	86	149	273	332	445	569	585	260	6,1
							105	105	105	412	412	412		
14	20/7 a 13h 5'	20/7 a 17h30'	34	100.0	.43	84	40	50	64	100	105	105	270	2,9
							32	85	85	85	85	85		- 1
15	20/7 a 17h55'	20/7 a 19h15'	34	32.4	82	61	35	37	40	40	40	40	85	0,5
			202	maran a	120	0.000	411	411	411	411	11	11		
16	26/7 a 1h35'	26/7 a 5h50'	35	100.0	61	412	78	144	203	313	330	365	260	16,2
					٠.		18	18	18	61	61	61	0.000	
17	29/7 a 1h 5'	29/ 7 a 6h40'	35	100.0	61	49	114	228	322	594	858	990	340	28,4
1.0	2/0 211 0	2/0 221 201	25	10.7	<i>(</i> 1	20	28	28	9	9	9	11	1.45	4.7
18	2/8 a 21h 0'	2/ 8 a 23h20'	35	48.6	61	29	141 32	239 32	280 32	380 32	430 32	430 32	145	4,7
19	510 - OLOO!	E/0 - 161-01	35	07.1	43	412		327		420			105	20.5
19	5/ 8 a 9h20'	5/8 a 16h 0'	33	97.1	43	412	215	105	360 105	105	435 105	525 105	405	29,5
20	0/0 0 06551	0/0 0 12520	35	90 O	26	85							220	62
20	8/8 a 9h55'	8/ 8 a 13h30'	33	80.0	26	83	60 116	112 116	148 116	210 116	210 116	210 116	220	6,2
21	13/8 a 17h50'	13/8 a 19h 5'	33	45.5	73	70	73	114	131	135	135	135	80	26
21	15/041/1150	13/0 / 1711 3	23	45.5	13	70	116	114	11	133	11	11	00	2,6
22	24/ 8 a 16h45'	24/ 8 a 19h40'	35	37.1	73	80	82	142	206	344	519	580	180	4,7
22	2+1 0 a 101143	24/ 0 a 171140	33	3/.1	13	00	78	78	78	78	78	78	100	4,7
23	27/8 a 5h15'	27/8 a 8h 0'	36	47.2	57	269	54	94	113	147	214	240	170	5,6
23	211 0 a 31113	2110000110	30	47.2	21	209	51	105	105	41	51	51	170	3,0
							31	100	100	71	21	21		

		-	4 2	1	-
Sui	te	du	tah	leau	2

	c du tableau z													
24	27/8 a 8h10'	27/8 a 11h15'	36	63.9	105	70	54	107	128	165	165	165	190	3,0
							50	50	80	80	80	80		
25	30/8 a 13h 5'	30/8 a 15h25'	35	42.9	34	84	92	147	190	215	215	215	145	2,9
							85	85	85	85	85	85		
26	31/8 a 16h25'	31/8 a 23h 5'	35	100.0	26	49	85	112	163	290	330	340	405	16,8
							84	78	78	80	80	80		
27	1/9 a 6h25'	1/9 a 14h25'	34	91.2	80	78	99	151	161	218	235	440	485	22,5
							18	18	18	5	5	82		
28	4/9 a 6h15'	4/9 a 8h35'	35	60.0	61	28	72	120	147	175	180	190	145	3,1
							411	411	411	411	411	411		
29	7/9 a 3h 0'	7/9 a 9h 0'	35	97.1	35	86	81	150	218	355	473	515	365	16,8
							269	269	269	269	269	269		
30	15/9 a 16h20'	15/9 a 22h 0'	35	94.3	29	412	120	216	255	384	606	770	345	14,6
							269	269	269	84	32	32		
31	24/9 a 0h 0'	24/9 a 3h 5'	35	71.4	57	82	82	130	143	225	265	265	190	4,4
							41	41	41	5	5	5		
32	24/9 a 7h15'	24/9 a 9h30'	34	50.0	57	29.	22	25	25	30	35	45	140	1,1
							35	35	35	412	412	32		
33	27/9 a 22h55'	28/9 a 2h10'	34	70.6	61	86	58	101	127	180	210	210	200	4,3
							412	412	412	412	412	412		-
34	6/10 a 17h 5'	6/10 a 19h25'	34	58.8	78	105	103	206	302	475	515	515	145	6,4
							28	28	28	28	28	28		

 Maxima
 Maximorum
 sur
 5 mn
 21.5

 sur
 10 mn
 32.7

 sur
 15 mn
 36.0

 sur
 30 mn
 59.4

 sur
 60 mn
 85.8

 totalite
 :
 99.0

relation avec le gradient climatologique que l'on observe en Afrique de l'Ouest à grande échelle, mais cependant, on trouve des poches de sécheresse au sud dans la zone de Guilahel (station n° 49 - 356 mm) ou celle de Gamonzon - Sandideye (station n° 34 et 57 - 306 et 357 mm) et aussi à la limite sud de la zone comme à Kare (station n° 24 -376,6 mm) ou Yillade (station n° 35 -397,9 mm). Par contre on observe une zone à valeur un peu plus forte au nord au niveau du site central comme à Malidjibo (station n° 269 - 509,9 mm). (figure 1). Les valeurs extrêmes, minimale et maximale, ont été enregistrées à la station de Kokorbe Fandou (n° 73 - 272,7 mm) et Bogdjottou (n°412 - 565,4 mm) (tableau 1). Ces deux stations sont situées respectivement au nord et au sud de la zone à une distance d'environ 123 km, ce qui donne un gradient moyen de pluie de 2,4 mm.km⁻¹. Localement on peut trouver des gradients beaucoup plus forts, de l'ordre de 7 mm.km⁻¹ entre les stations de Malidjibo (n° 269) et Kokorbe Fandou (n° 73) distantes de 34 km.

1.2 Distribution temporelle

En 1997, la première pluie qui a touché le degré carré s'est produite le 24 mars et semble avoir concerné au moins toute la partie sud de la zone EPSAT-Niger jusqu'à Niamey, au dessus les stations n'étaient pas encore installées on a donc pas de données concernant cette période. Sur le restant du mois de mars on enregistre encore entre 3 et 5 jours de pluie préférentiellement situées dans la partie sud du degré carré. Ce nombre d'événements assez inhabituel dans la région aurait pu supposer une arrivée précoce du flux de mousson, or on constate que ce ne fut pas le cas car avril va être très sec. Durant le mois de mai jusqu'à la première quinzaine de juin, va se faire progressivement la mise en place de la saison des pluies avec quelques événements pluvieux. Juillet voit l'augmentation nette en nombre d'événement et en cumul, avec aussi la présence d'une petite période sèche durant la seconde décade. Jusqu'à la fin juillet on peut considérer que la saison 1997 suit un comportement identique aux saisons déjà étudiée précédemment, et aucun présage de catastrophe agricole n'était encore envisageable. C'est la pluviométrie du mois d'août qui va marquer spécifiquement cette saison (figure 2). On ne note pas un seul événement touchant toute la zone jusqu'au 5 août, tant au nord qu'au sud. Le nombre total d'événement aux stations (> 1,0 mm) est compris entre 3 et 7 (normalement on peut statistiquement espérer 1 pluie tous les 3 jours). De plus, le cumul par événement est aussi fortement diminué par rapport à une saison normale, sur près des 2/3 des stations le nombre d'événements supérieurs à 10,0 mm est inférieur ou égal à 3. Par comparaison, la saison 1996, qui apparaît comme normale par rapport à la période 1968 - 1989, a enregistré une moyenne de 8 événements par station supérieurs à 10,0 mm pour le mois d'août. La moyenne enregistrée sur le degré carré est de seulement 84 mm (20 % de l'apport saisonnier) pour une valeur située entre 175 et 300 mm (40 à 60 % de l'apport saisonnier) sur la période 1990 - 96. En septembre, on a une reprise de la pluviométrie qui montre ainsi une moyenne sur la zone un peu supérieure à celle du mois d'août (figure 3). Le nombre d'événement est assez important pour la période (environ 6 par station). A noter aussi que sur les 8 années d'étude la moyenne sur la zone en septembre est l'une des plus élevée. Début octobre, on a un reliquat de pluie, environ 8 à 10 mm sur la zone, qui va ainsi clôturer la saison assez tardivement par rapport aux années antérieures. On a donc un très fort contraste en 1997, qui montre, bien une fois de plus, qu'il est difficile de faire de la prévision à court ou moyen

terme sur la qualité d'une saison des pluies. Sur les différentes années étudiées, on a tous les cas de figures.

année à cumul normal:

- distribution de la pluie respectant la saisonnalité,
- aridité en début de saison compensée par des mois d'août et septembre fortement arrosé
- pluviosité très forte en début de saison avec une pause pluviométrique en juillet année déficitaire :
- baisse général de la pluviosité sur les différents mois année excédentaire
- début de saison tardif compensé par des mois de juillet à septembre excédentaire.

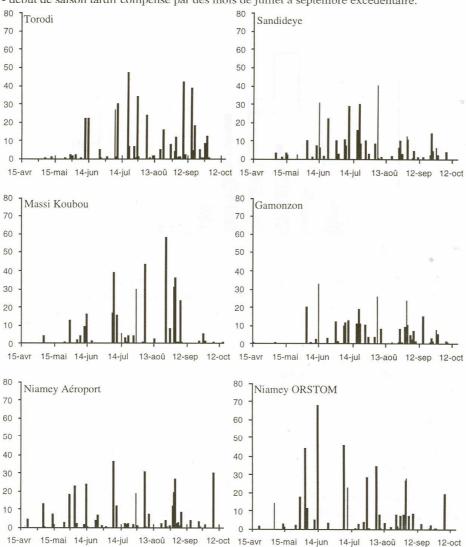


Figure 2: Chronologies des pluies journalières (mm) enregistrées sur 6 stations.

Comme chaque année, la comparaison des cumuls mensuels entre les stations de Niamey Aéroport et Niamey Orstom, distantes d'une dizaine de kilomètres montre des différences importantes (50 % au mois de juin - figure 3) ceci montre bien qu'au Sahel la corrélation station à station que cela soit au pas saisonnier, mensuel ou événementiel n'apparaît pas stationnaire.

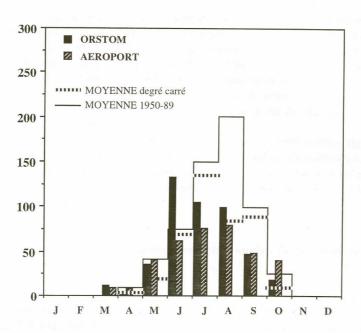


Figure 3: Comparaison des cumuls mensuels 1997 (mm) des 2 stations de Niamey avec les cumuls moyens mensuels sur la période 1950-89.

La première pluie spatialement importante (au moins 30 % de stations touchées) est tombée le 5 mai (34 % de stations touchées), mais la première averse conséquente en terme quantitatif est enregistrée le 2 juin avec 11 mm (**tableau 2**). La dernière pluie importante spatialement a été enregistrée le 6 octobre. Le nombre d'événements majeurs en 1997 est égal à 34, comparable aux années 90 et 93 qui étaient des années plutôt déficitaires.

Le cumul total des événements majeurs représente 87 % du total saisonnier soit 366 mm. La distribution des précipitations au cours de la saison met en évidence une très forte représentation en cumul des événements majeurs au mois de juillet (40 %) tandis qu'en août on a 20 % environ, du même ordre qu'en juin et septembre. Ce qui est remarquable aussi au mois d'août c'est le faible nombre de systèmes de grande extension spatiale (au moins 80 % de stations touchées) qui représente seulement 1/3 du nombre d'événements majeurs soit 3 sur 9 (juillet 3/4 du nombre d'événements majeurs soit 6 sur 8) alors que pour les saisons précédentes ce nombre était maximal au mois d'août. L'épisode qui a donné la hauteur de pluie moyenne la plus importante sur le degré carré (49,9 mm) s'est passé le 7 juillet. Par rapport aux sept saisons précédentes (29 -54 mm) ce cumul maximal enregistré sur la saison est en seconde position après celle enregistrée durant la saison la plus excédentaire. Il

n'apparaît donc pas de lien évident entre qualité de la saison et cumul maximal événementiel moyenné sur la zone.

1.3 Situation pluviométrique annuelle à l'échelle du Niger

La saison 1997 sur l'ensemble du territoire nigérien montre un contraste important entre le nord et le sud (**figure 4**). Au nord du 16 ème parallèle, les isohyètes montrent un excédent pluviométrique important surtout dans la partie nord-ouest du Niger où l'on constate un écart de 100 km par rapport à la période 1950 - 1994. Il est à noté que les cumuls pluviométriques dans cette zone sont supérieurs aux cumuls de la saison 1994 qui représente l'année la plus humide depuis 1990. Par contre au sud de cette zone on a un soudain affaissement des isohyètes avec dans certaines zones une perte de plus de 200 mm par rapport à la période 1950 - 1994.

Par comparaison avec les cartes d'isohyètes du Niger des années 1990 à 1996 (**figure 5**), la saison 97 se démarque par une forte discontinuité des conditions pluviométriques entre le nord et le sud. Pour le sud on a un comportement déficitaire du même type qu'en 1990 et 1993 (années déficitaires), tandis que pour le nord, on se rapprocherait plutôt de la carte de 1994, année excédentaire.

1.4 Comparaison avec les résultats acquis les autres années de l'expérience EPSAT-NIGER - 1990 à 1997

Cette année, la fourchette des hauteurs de pluie montre un rapport de 2,1. La carte des isohyètes présente cependant un lissage important avec 3 zones principales délimitées par les isohyètes 350-400; 400-450 et 450-500 (figure 6). Sur l'échantillon, que constitue les huit années de l'étude, la moyenne sur le degré carré est de 499 mm, si on enlève l'année excédentaire (1994) la moyenne n'est plus que de 476 mm, on observe donc une tendance un peu plus déficitaire à long terme que celle observée pour la période postérieure à 1968 sur la station de référence de Niamey Aéroport (505 mm).

Comme chaque année on analyse les cartes de cumul des différentes années (somme des grilles saisonnières issues du krigeage, **figure** 7) pour regarder l'évolution spatiale de la répartition des pluies. La carte des cumuls montre progressivement, surtout à partir de 1994, la prédominance d'un gradient nord-sud caractéristique de la climatologie de l'Afrique Occidentale, que l'on ne distingue pas toujours à l'échelle annuelle. D'autre part la structure cumulée de cette année et de l'année précédente ne diffèrent pratiquement pas et il est possible que l'on ait atteint un certain régime d'équilibre.

Comme chaque année, il est impératif de rappeler, qu'au vu de la forte variabilité spatiale qui existe à l'échelle saisonnière sur la zone d'étude, le calcul d'une moyenne spatiale sur une surface donnée n'est représentatif que si le réseau de mesures rend compte, du moins en partie, de cette hétérogénéité. Pour le Sahel, les résultats montrent qu'une dizaine de postes, répartis régulièrement sur la surface où l'on veut calculer la pluie moyenne, est suffisant (**Taupin et al., 1993a**). Il reste cependant que cette moyenne "régionale" est à manipuler avec précaution, sachant que la variabilité des valeurs est telle que 30 à 40 % des stations s'en éloignent de plus d'un écart-type.

Le **tableau 3** résume les principaux paramètres statistiques pluviométriques obtenus sur le degré carré pour les huit années d'étude.

Tableau 3: Valeurs pluviométriques caractéristiques enregistrées au cours des huit campagnes d'EPSAT-NIGER (1990-97).

×		(Cumuls	saisonnie	rs en mm		Maxima à une station (mm)
Année	Moy D.C. (m)	Min (m)	Max (M)	ECT	(M-m)/μ (%)	C.V. (%)	Max. Max. Max. 5' 60' Evt
1990	419	292	659	62	88	14,8	30,0 75,0 102,0
1991	522	341	725	79	74	15,1	17,5 85,0 162,0
1992	513	389	782	68	77	13,3	29,0 74,5 92,0
1993	463	314	621	84	66	18,1	15,5 80,8 95,5
1994	663	492	856	90	55	13,5	15,0 108,8 120,0
1995	495	323	636	72	63	14,5	16,2 75,5 89,5
1996	503	374	597	56	44	11,1	15,6 88,2 110,0
1997	417	273	565	73	70	17,5	21,5 85,8 99,0

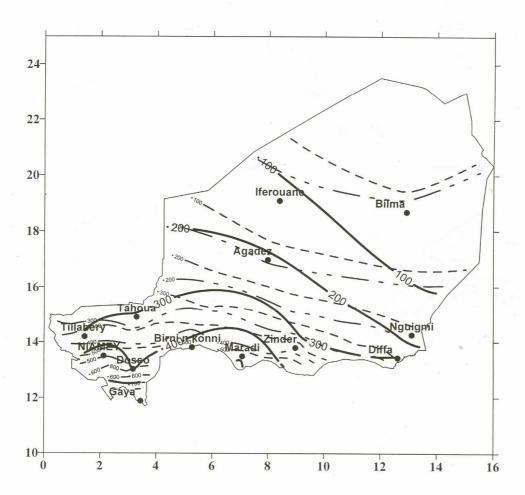


Figure 4: Comparaison des isohyètes de la saison 1997 (trait gras plein) sur le Niger avec les isohyètes inter-annuelles sur la période 1950-1994 (tireté continu) et sur la période 1968-1994 (tireté discontinu).

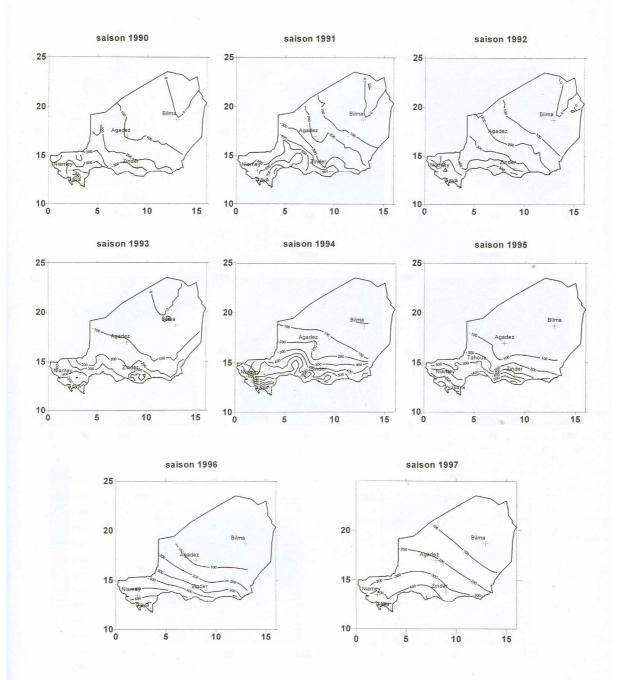


Figure 5: Comparaison des isohyètes annuelles sur le Niger (mm) pour les années 1990 à 1997.

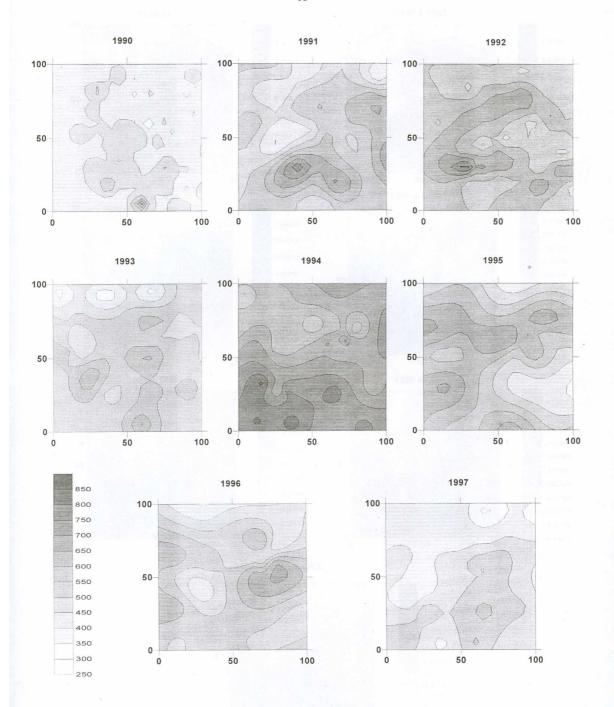


Figure 6: Répartition de la pluviométrie sur le degré carré de Niamey, de 1990 à 1997.

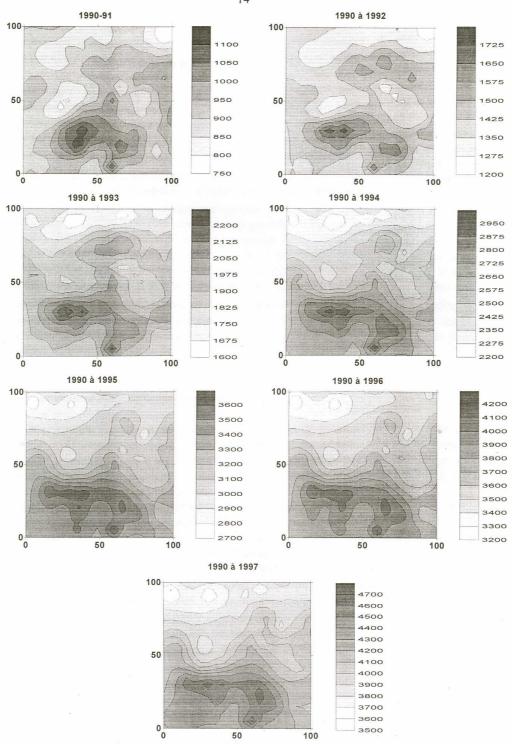


Figure 7: Comparaison de la pluviométrie annuelle cumulée des différentes années.

LE RESEAU DE PLUVIOGRAPHES

2.1 Le réseau en 1997

L'expérimentation EPSAT-Niger est dans une phase de suivi à long terme depuis la saison 1994, ceci a impliqué une diminution progressive du nombre de pluviographes au fur et à mesure que les expérimentations s'achevaient. Comme pour les années antérieures la couverture pluviographique s'étend sur environ 16 000 km², limitée en longitude par les méridiens 1°40 E et 3°E et en latitude par les parallèles 13 et 14° N. Cette année le réseau est passé de 37 à 36 postes deux stations situées sur le site central ont été supprimées Brousse tigrée (n° 401) et SD bagou (n° 410), par contre une nouvelle station a été implantée en milieu de saison au mois d'août à Kafina (n° 413) en liaison avec le suivi d'une mare au nord-est de la zone (tableaux 4 et 5, figure 8). Le type de pluviographe est à augets basculeurs, muni d'un cône de 400 cm² (Lebel et al., 1991). Ce réseau comporte une maille de base de 25 km qui, au regard des travaux qui ont déjà été effectués, semble suffisant pour obtenir des valeurs moyennes de pluie sur les surfaces de l'ordre du degré carré.

2.2 Installation et surveillance du réseau

Cinq postes ont fonctionné en permanence entre la fin de la saison des pluies 1996 et le début de la saison des pluies 1997. Les autres ont été démontés, nettoyés, testés et entreposés durant la saison sèche. Cette année encore, une carte électronique "oedipe" s'est avérée hors d'usage au cours de la saison et a été remplacée immédiatement à partir du stock constitué par le surplus de pluviographes issus du réseau dense d'EPSAT-Niger.

Le planning d'installation des stations (**tableau 1**) a commencé le 19 mars (Torodi, n° 86) et s'est terminé le 17 avril (Bogdjottou, n°412).

La plupart des stations implantées près des villages, ont été surveillées en permanence par un gardien, évitant ainsi la plupart des déprédations et vols. Pour obtenir un suivi de la meilleure qualité possible, compte tenu du personnel disponible et du budget, chaque station a reçu une visite de contrôle au moins tous les 31 jours durant toute la saison des pluies. Les cartouches ont été changées environ tous les 45 jours pour permettre de suivre l'évolution de la saison des pluies en temps le moins décalé possible.

En fin de saison, le démontage des stations s'est effectué entre le 21 octobre et le 3 novembre.

Tableau 4: Liste des 36 postes du réseau en 1997, classés par ordre alphabétique.

station	Identification	Lati	itude		Long	gitude		Altitude	X	Y	EPSAT
		deg	min	sec	deg	min	sec	TE G	3 7		
Alkama	1321204300	13	49	19	02	57	28	205	103.32	91,39	4
Banizoumbou	1321201100	13	31	58	02	39	37	202	71,34	59,25	
Bazanga Bangou	1321200500	13	30	20	02	34	59	266	63,01	56,21	1
Beri Koira	1321202100	13	38	59	02	28	37	215	51,49	72,26	2
Berkiawel	1321202800	13	30	41	02	18	31	213	33,33	56,86	2
Bogdiottou	1321241200	13	04	50	01	49	48		-18,41	7,75	
Bololadie	1321208400	13	13	29	01	52	12		-14,06	24,98	41
Boubon Golf	1321208500	13	36	24	01	56	09		-6,93	67,46	8
Darey	1321201800	13	38	12	02	44	32	250	80,14	70,80	1
Debere Gati	1321202500	13	03	40	02	06	52	230	12,38	6,78	2:
		THEMS.			02	00	52	230	12,30	0,78	2.
Fandou Beri	1321200900	13	31	55	02	33	31	232	60,36	59,14	9
Gamonzon	1321203400	13	27	40	03	01	54	232	111,49	51,28	34
Gardana Kouara	1321205000	13	50	04	02	16	33	212	29,78	92,78	50
Gorou Goussa	1321208000	13	50	18	02	02	08	212	3,83	93,22	80
Guilahel	1321204900	13	17	41	02	08	45	274	15,77	32,79	49
Hama jachère	1321241100	13	33	05	02	41	44	2/4	75,14	61,33	411
Harikanassou	1321204100	13	15	28	02	50	28	208	90,99	28,65	411
IH Jachere hapex1	1321210500	13	14	38	02	14	39	200	26,41	27,11	105
Kafina	1321241300	13	42	51	02	43	59		78,42	78,79	413
Kaligorou	1321206100	13	36	44	03	00	47	200	109,4	68,09	61
		. 1, 111	20		00	00	-77	200	109,4	00,09	01
Kare	1321202900	13	02	52	02	20	19	200	36,65	5,32	29
Kokorbe Fandou	1321207300	13	51	10	02	37	11	200	66,85	94,82	73
Kollo	1321205400	13	22	27	02	14	40	198	26,42	41,61	54
Koure Kobade	1321202600	13	00	17	03	03	00	220	113,71	0,52	26
Koure Sud	1321205100	13	14	31	02	36	18	255	65,45	26,89	51
Koyria	1321208200	13	46	00	01	42	00	200	-32,38	85,25	82
Mali Djibo	1321226900	13	33	06	02	40	06		72,21	61,36	269
Massi Koubou	1321207800	13	49	37	02	25	00	250	44,95	91,94	78
Niamey Aeroport	1321209400	13	28	47	02	10	23	250	18,71	53,36	94
Niamey IRI	1321208300	13	30	00	02	05	21		9,63	55,6	83
Niamey ORSTOM	1321207000	13	31	52	02	05	48	220	10,44	59,07	70
Sandideye	1321205700	13	13	31	03	03	14	230	114,01	25,06	57
Γanaberi	1321203200	13	02	30	02	32	53		59,34	4,63	32
Γorodi	1321208600	13	07	00	01	47	06		-23,27	12,97	86
Wankama	1321211600	13	39	00	02	38	55		70,02	72,28	116
Yillade	1321203500	13	01	16	02	47	10	237	85,12	2,35	35

Latd. et Longd. en degré décimaux

Par rapport à 1996, le réseau sur le site central a été allégé, on a démonté les stations de Brousse Tigrée (401) et Samadey Bagou (410). On a rajouté la stations de Kafina (413) pour un meilleur suivi de la mare de ce village.

Tableau 5: Liste des 36 sites du réseau en 1997, classés par numéro.

EPSAT	station	Identification	Lati	itude		Long	gitude		Altitude	X	Y
		V .	deg	min	sec	deg	min	sec			
5	D	1221200500			2.2						
9	Bazanga Bangou	1321200500	13	30	20	02	34	59	266	63,01	56,21
9	Fandou Beri	1321200900	13	31	55	02	33	31	232	60,36	59,14
11	Banizoumbou	1321201100	13	31	58	02	39	37	202	71,34	59,25
18	Darey	1321201800	13	38	12	02	44	32	250	80,14	70,80
21	Beri Koira	1321202100	13	38	59	02	28	37	215	51,49	72,26
25	Debere Gati	1321202500	13	03	40	02	06	52	230	12,38	6,78
26	Koure Kobade	1321202600	13	00	. 17	03	03	00	220	113,71	0,52
28	Berkiawel	1321202800	13	30	41	02	18	31	LLO	33,33	56,86
29	Kare	1321202900	13	02	52	02	20	19	200	36,65	5,32
32	Tanaberi	1321203200	13	02	30	02	32	53		59,34	1.62
34	Gamonzon	1321203400	13	27	40	03	01	54			4,63
35	Ýillade	1321203500	13	01	16	02	47	10	237	111,49 85,12	51,28 2,35
41	Harikanassou	1321204100	13	15	28	02	50	28	208	00.00	20.65
43	Alkama	1321204300	13	49	19	02	57	28		90,99	28,65
19	Guilahel	1321204900	13	17	41	02	08	45	205 274	103,32 15,77	91,39 32,79
50	Gardana Kouara	1321205000	13	50	04	02	16	22	212	20.70	00.70
51	Koure Sud	1321205100	13	14		02	16	33	212	29,78	92,78
54	Kollo	1321205400	13	22	31 27	02	36	18	255	65,45	26,89
57	Sandideye	1321205700	13	13	31	02	14 03	40	198 230	26,42 114,01	41,61 25,06
51	Kaligorou	1321206100	13	36	44	03	00	47	200	109,40	68,09
70	Niamey ORSTOM	1321207000	13	31	52	02	05	48	220	10.44	50.07
73	Kokorbe Fandou	1321207300	13	51	10	02	37		220	10,44	59,07
78	Massi Koubou	1321207800	13	49	37	02	25	11	250	66,85 44,95	94,82 91,94
80	Gorou Goussa	1321208000	13	50	18	02	02	00			
32	Koyria	1321208200	13	46		02	02	08		3,83	93,22
3	Niamey IRI	1321208200	13	30	00	01	42	00		-32,38	85,25
4	Bololadie	1321208400	13	13	29	02	05	21		9,63	55,60
5	Boubon Golf	1321208400	13	36	29	01	52	12		-14,06	24,98
6	Torodi	1321208600	13	07	00	01 01	56 47	09 06		-6,93 -23,27	67,46 12,97
4	Niamey Aeroport	1321209400	13	28	47	02	10	23		18,71	53,36
05	IH Jachere hapex1	1321210500	13	14	38	02	14	39		26,41	27,11
16	Wankama	1321211600	13	39	00	02	38	55		70,02	72,28
69	Mali Djibo	1321226900	13	33	06	02	40	06	*	72,21	61,36
11	Hama jachère	1321241100	13	33	05	02	41	44		75,14	61,33
13	Kafina	1321241300	13	42	51	02	43	59		78,42	78,79



Figure 8: Dispositif de mesures durant la saison 1997. a) zone complète Coordonnées en km - Origine: 2°E, 13°N. b) site central

2.3 Fonctionnement

En 1997, le taux de fonctionnement reste à un bon niveau. Pour les 36 pluviographes, le taux a atteint 97,7 % (173 jours de panne pour 7435 jours d'appareillage) et on n'a pas enregistré de lacune seau. Huit appareils ont connu des avaries (**tableau 6**).

Sur l'ensemble des stations, 78 % des postes ne présentent pas de lacune augets (pour le détail des pannes des stations en lacunes se reporter à l'annexe A-1). Ce faible taux de lacunes sur les augets a permis de reconstituer les cumuls saisonniers et mensuels de la plupart des stations.

2.4 Dérives en temps

Comme les années précédentes, on constate une dérive en temps bien supérieure à celle donnée par le constructeur qui est normalement de 10 secondes par mois (**tableau 7**). Les dérives sont comprises entre -1 et +48 minutes pour 100 jours, elles sont stables d'une année sur l'autre et sont liées aux caractéristiques de chaque oedipe.

2.5 Comparaison valeurs seau et valeurs augets

Suivant le même dispositif que l'an dernier (haubanage de certaines stations), cette année, l'écart entre le cumul augets et le cumul seau pour la saison est resté faible (**tableau 8**). L'écart maximal atteint, sur la saison, 6,9 % et seulement 2 postes ont un écart supérieur à 5,0 %. L'écart relatif moyen seau-augets sur les 28 postes sans lacune est égal à 2,6 %.

Tableau 6: Périodes de fonctionnement des 36 pluviographes installés en 1997.

		fonctionnement	

Stations			Pe	riodes	de fonc	tionnem	ent		
Nom	Mars	Avril	Mai	Juin	Juil.	Aout	Sept.	Oct.	Nov.
Alkama		7					I	1	
Banizoumbou									
Bazanga Bang.									
Beri Koira									
Berkiawal						10			
Bogdjottou									
Bololadie	-								
Boubon Golf									
Darey									
Debere Gati									
Fandou Beri									
Gamonzon									
Gardana Koua	12.50								
Gorou Goussa									
Guilahel									
Hama Jachere	-							%	
Harikanassou								-,	
IH Jachere									
Niamey IRI									
Kafina		1.1				12			
Kaligorou									
Kare									
Kokorbe Fand.									
Kollo									
Koure Kobade					-11 -				
Koure Sud				=====					
Koyria									
Mali Djibo	-								
Massi Koubou									
Niamey Aer.									
Niamey ORSTOM									
Sandideye									
Tanaberi									
Torodi									
Wankama									
Yiladde							=		

Tableau 7: Dérives de temps en minutes calculées pour chaque cartouche lors du dépouillement, rapportées à 100 jours de fonctionnement

Station	Cart. 1	Cart. 2	Cart. 3	Cart. 4	Cart. 5
Alkama	27	27	2.6	i No. 1	27.
Banizoumbou	30		26	27	27
Bazanga Bangou		29	29	29	
Beri Koira	-1 2.5	-1	-1	-1	-1
Berkiawel	25	23	25	23	25
	26 9	23	25	23	25
Bogdjottou		7	7	7	
Bololadie	32	30	30	29	
Boubon Golf	26	26	27	26	
Darey	7	7	7	7	
Debere Gati	10	10	10	10	
Fandou Beri	10	7	9	9	
Gamonzon	30	30	30	29	
Gardana Kouara	10	10	10	10	
Gorou Goussa	. 0	0	0	0	
Guilahel	27	27	27	27	
Hama jachère	37	36	36	36	
Harikanassou	12	12	12	12	
IH Jachere hapex 1	48	48	48	48	
Kafina	10				
Kaligorou	29	29	29	30	
Kare	6	6	6	6	5
Kokorbe Fandou	5	5	5	5	
Kollo	-1	-1	-1	-1	
Koure Kobade	13	13	14	13	
Koure Sud	7	6	9	7	
Koyria	6	6	6	6	5
Mali Djibo	7	6	6	6	
Massi Koubou	30	29	30	29	29
Niamey Aeroport	9	9	9	7	7
Niamey IRI	6	5	10	12	10
Niamey ORSTOM	29	29	27	27	27
Sandideye	29	29	29	29	
Tanaberi	-1	-1	-1	-1	
Torodi	34	32	32	32	
Wankama	12	12	12	12	
Yillade	27	26	27	26	

Tableau 8: comparaison des valeurs totales de la saison (mm), seau et augets. delta = (augets - seau)/seau, en pour cent.

Station	n°Epsat	pério		cumul augets	cumul seau	delta %
		comp	araison	n a l k	7 75 1145 61	30,0217
Alkama	43	14/04	22/10	lacune	200.0	
Banizoumbou	11	24/03	27/10		298,0	
Bazanga	5	11/04		519,0	488,6	6,22
Beri Koira	21	09/04	27/10	457,0	440,5	3,74
Berkiawel	28	09/04	24/10	380,5	376,2	1,14
Bogdjottou	412		28/10	lacune	416,2	
Bololadie	84	19/03	03/11	562,5	582,7	-3,46
Boubon	84 85	21/03	03/11	lacune	442,0	
Darey		04/04	25/10	397,0	384,1	3,36
Debere Gati	18	10/04	23/10	447,5	437,8	2,21
Debere Gati	25	01/04	31/10	523,0	514,0	1,75
Fandou Beri	9	24/03	27/10	525,0	500,3	4,98
Gamonzon	34	08/04	29/10	312,5	306,6	1,92
Gardama	50	03/04	21/10	377,0	370,3	1,81
Gorou Goussa	80	03/04	21/10	337,0	342,1	-1,49
Guilahel	49	01/04	31/10	373,5	356,0	4,91
Hama Jachere	411	24/03	27/10	534,0	508,8	4,95
Harikanassou	41	08/04	29/10	472,0	468,6	0,72
IH Jachere	105	25/03	07/11	517,0	494,3	4,59
Kafina	413	18/08	22/10	lacune	137,0	7,57
Kaligorou	61	14/04	22/10	lacune	436,2	
Kare	20	0.1.10.1				
	29	01/04	31/10	373,0	381,0	-2,10
Kokorbe Fandou	73	10/04	23/10	272,0	272,7	-0,25
Kollo	54	02/04	30/10	378,0	366,1	3,25
Koure Kobade	26	07/04	28/10	lacune	462,6	*
Koure Sud	51	07/04	28/10	538,0	535,9	0,39
Koyria	82	04/04	25/10	lacune	409,2	
Mali Djibo	269	24/03	27/10	523,0	514,1	1,73
Massi Koubou	78	09/04	24/10	391,5	382,5	2,35
Niamey Aeroport	94	10/03	20/11	354,0	360,8	-1,88
Niamey IRI	83	10/03	04/11	lacune	453,0	
Niamey Orstom	70	20/02	25/10	455,0	449,5	1,22
Sandideye	57	08/04	29/10	363,0	357,0	1,68
Гапаberi	32	02/04	30/10	522,5	516,0	554.500000V
Γorodi	86	19/03	03/11	441,5	435.6	1,26
Wankama	116	10/04	23/10	397,0	435,6 392,6	1,35
Yillade	35	07/04	28/10	372,5	392,6	1,12 -6,85

ANALYSE PRELIMINAIRE DE LA STRUCTURE DES CHAMPS PLUVIOMETRIQUES

3.1 Cumuls saisonniers

Comme pour la plupart des années, exception faite de la saison 1992, les cumuls saisonniers enregistrés sur le degré carré, pour la période de référence 15 avril-15 octobre, se répartissent selon une loi normale, pour cette année de moyenne arithmétique égale à 417,7 mm avec un écart-type de 72,8 mm (figure 9).

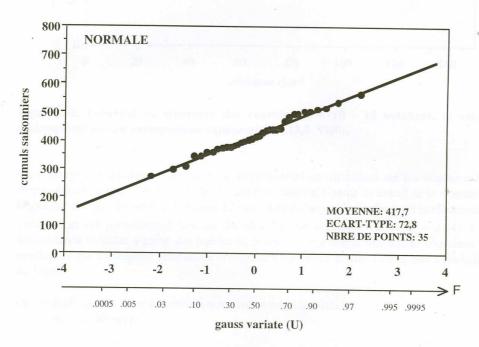


Figure 9: Ajustement d'une loi normale sur les cumuls de la période 15 avril - 15 octobre.

Le variogramme saisonnier pour la saison 1997 (figure 10), montre une structure parfaitement organisée que l'on peut modéliser par une fonction exponentielle de pépite nulle, de coeficient de forme de 13,5 et de palier égal à 5300. La construction de la carte d'isohyètes saisonnière et des ECT correspondants à partir de cette fonction exponentielle est représentée dans la figure 11 et apparaît parfaitement réaliste par rapport aux mesures aux stations.

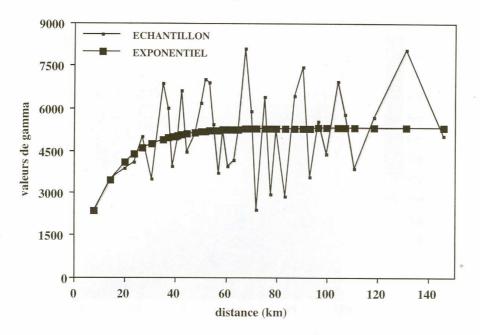


Figure 10: Fonction de structure des cumuls (15 avril - 15 octobre), et essai d'ajustement par un variogramme exponentiel (0, 13.5, 5300).

On a essayé d'améliorer le variogramme expérimental en travaillant sur les résidus à la dérive climatologique. On a tout d'abord estimé ce gradient à partir du calcul de la moyenne krigée sur des bandes est-ouest (figure 12) de 5 km de large. Ce gradient est parfaitement visualisé et est parfaitement linéaire du nord au sud du degré carré ($r^2 = 0.84$). La décroissance calculée à partir des bandes de 5 km de large donne une valeur d'environ 1 mm/km, ce qui correspond cette année approximativement au gradient enregistré à l'échelle du Niger.

On a calculé en tout point un résidu à cette dérive selon la formule :

$$e_i = z_i - M(x_i, y_i)$$

où e_i est le résidu à la station i, z_i le cumul saisonnier mesuré à cette station et $M(x_i,y_i)$ est la dérive estimée par la relation obtenue précédemment :

$$M(x_i,y_i) = 472,9 - 1,06y_i$$

 x_i et y_i sont les coordonnées en km dans le repère d'origine (2°E, 13°N)

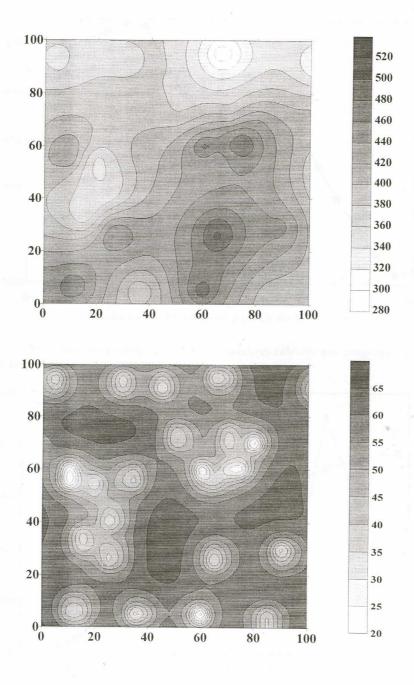


Figure 11: Isohyètes du cumul saisonnier et de l' ECT sur le degré carré d'après le modèle exponentiel.

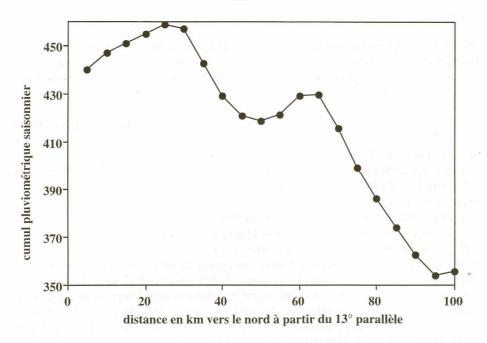


Figure 12: Moyenne des cumuls (15 avril - 15 octobre) calculée par krigeage sur des bandes latitudinales de largeurs 5 kilomètres.

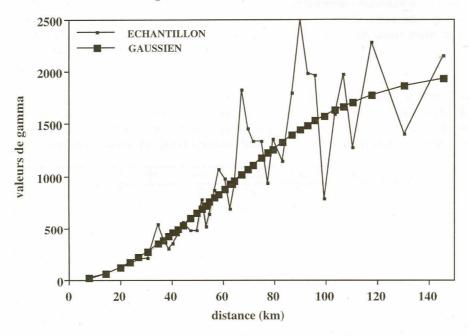


Figure 13: Structure des cumuls (15 avril - 15 octobre). Variogramme des résidus à la dérive M(x,y) = 472.9 - 1.06y.

Le variogramme des résidus (figure 13) est aussi parfaitement défini par une fonction gaussienne mais l'erreur faite sur les mesures par reconstitution n'apporte pas d'amélioration par rapport au variogramme issu des données brutes.

3.2 Analyse par épisodes

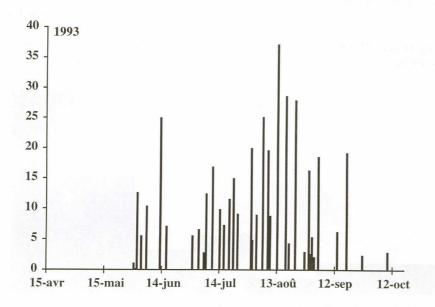

Le nombre d'épisodes majeurs en 1997 est égal à 34, selon les critères d'extension spatiale et de continuité temporelle définis précédemment (cf. tableau 2). La circulation des systèmes convectifs sur la zone du degré carré respecte en général la circulation E-O, la première station touchée par la pluie se trouvant à l'est du degré carré et la dernière à l'ouest du degré carré (12 événements majeurs) ou E-S (6 événements majeurs). Quelques systèmes abordent la zone par le nord ou par le sud et se dégagent vers l'ouest (5 événements majeurs). Les autres événements se répartissent en trois groupes : convections strictement locales (5), systèmes venant d'un des bords du degré carré mais dégénérant sur la zone (5), systèmes prenant naissance sur le degré carré et s'éloignant vers l'ouest (1). Par rapport aux années précédentes, le nombre d'épisodes majeurs est un des plus faibles (1991-47 ; 1992-50 ; 1993-38; 1994-55; 1995-32; 1996-38; 1997-34). Le tableau 9 résume les différentes caractéristiques des événements majeurs pour les années 1991 à 1997. Au vu de l'échantillon dont on dispose la relation entre le nombre d'événements majeurs et le cumul saisonnier donne un r² de 0,65 et améliore un peu la relation obtenue l'an dernier (r² de 0,57), mais l'échantillon reste trop petit pour en tirer réellement l'existence d'un lien fort entre ces deux paramètres. Par contre, le nombre d'événements de très grande extension spatiale (plus de 80 % de stations touchées) n'apparaît pas comme un critère pertinent pour déterminer la qualité de la saison des pluies.

Tableau 9: Comparaison pour les années 1991 à 1997 du nombre d'événements majeurs, du cumul saisonnier, du cumul total des événements majeurs (au moins 30 % de stations touchées) et du pourcentage en nombre d'épisodes et en hauteur du total saisonnier des événements ayant touchés plus de 80 % des stations en fonctionnement.

	1991	1992	1993	1994	1995	1996	1997
nb évts > 30 %sts	47	50	38	55	32	38	34
cumul saisonnier	522	513	463	663	495	503	418
cumul évts majeurs	519	504	424	538	454	446	366
80 %sts cumul en %	80	85	75	71	84	80	65
80 %sts nbre en %	64	54	70	55	66	68	41

Sur les sept années, on peut, par contre, constater que la participation des événements majeurs dans le cumul total de la saison varie d'une année sur l'autre entre 81,1 % et 99,5 %, ceci ne semble pas être corrélé à la qualité de la saison, mais cela reste un bon indicateur de l'importance des événements locaux à faible dispersion spatiale et à leur contribution plus ou moins grande au cumul saisonnier.

La comparaison de la répartition des événements majeurs au cours de la saison 1993 et 1997, deux saisons fortement déficitaires (**figure 14**), montre bien la différence de processus qui a engendré l'aridité.

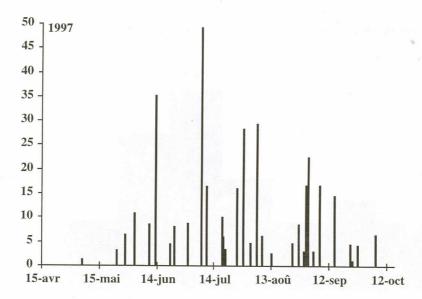


Figure 14: Chronologie et cumul moyen des événements majeurs (mm) enregistrés sur le degré carré en 1993 et 1997.

En 1993, on note que c'est un début tardif de la saison des pluies qui a engendré principalement la sécheresse à l'échelle du degré carré, le mois d'août étant normalement pourvu en événements majeurs, alors que pour 1997, c'est l'absence d'événements majeurs au mois d'août ainsi qu'une perte en cumul des quelques événements majeurs présents pendant cette période qui est la cause de la sécheresse.

L'histogramme des cumuls des épisode majeurs sur le degré carré (**figure 15**) montre que le nombre des épisodes à cumul inférieur à 10 mm en 1997 représente 64 % des événements.

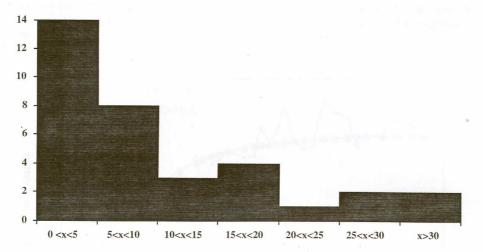


Figure 15: Histogramme du cumul en mm des épisodes spatiaux majeurs de la saison 1997.

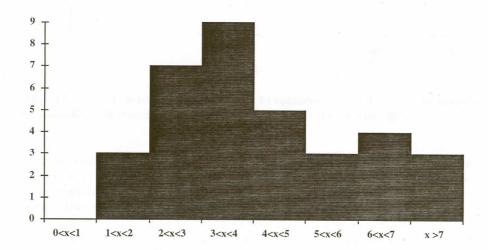


Figure 16: Histogramme de la durée en heure des épisodes spatiaux majeurs de la saison 1997.

L'histogramme de répartition de la durée des épisodes majeurs (**figure 16**) pour la saison 1997 montre un pic pour une durée comprise entre 2 et 5 heures. Par rapport aux autres années on note donc une diminution moyenne du temps de passage des événements sur le degré carré.

Cette année, les épisodes de grande extension spatiale sont en nombre nettement moins élevé 14/34 (événements qui ont touché au moins 80 % de stations) pour un cumul de seulement 272 mm, l'aridité de cette année à favorisé les systèmes locaux et les petits systèmes convectifs. Ces événements sont au nombre de 14, mais leur structure spatiale reste bien définie, et comme pour les autre années, elle est représentée par un variogramme climatologique de type exponentiel (pépite 0, coefficient de forme 18, figure 17).

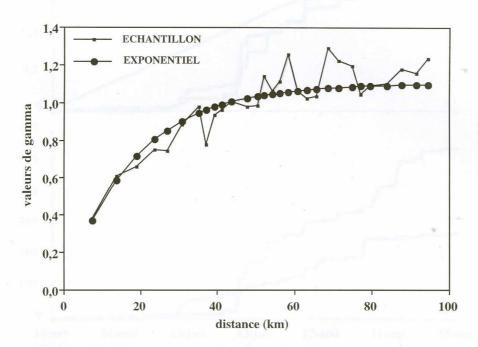


Figure 17: Variogramme climatologique des 14 épisodes de grande extension spatiale (au moins 80 % de stations en fonctionnement touchées) observés en 1997.

La comparaison de la répartition de la pluie aux différentes stations, au cours de la saison, permet aussi de visualiser le déficit pluviométrique et son évolution dans le temps. Pour cela on a comparé la station à cumul maximal, Bogdjottou - 565,4 mm (sud de la zone) avec 1 station fortement déficitaire Kokorbe Fandou - 272,7 mm (nord de la zone).

On peut constater, sur la **figure 18**, que le comportement des 2 stations est identique jusqu'à la fin de la première décade de juin en terme de quantité, peu ou pas de pluie. Le 10 juin la saison démarre nettement à Bogdjottou alors qu'à Kokorbe Fandou ce n'est qu'un mois plus tard qu'elle va réellement commencer. Ensuite, jusqu'au début de septembre les deux stations vont recevoir sensiblement la même quantité de pluie (on remarque donc que le

mois d'août normalement discriminant en terme de cumul entre le nord et le sud n'aura pas joué ce rôle en 1997) et la fin de saison voit une nette augmentation du nombre de précipitations et de leur quantité de pluie en faveur de Bogdjottou. La différence pluviométrique entre les deux stations a été acquise donc en début et en fin de saison.

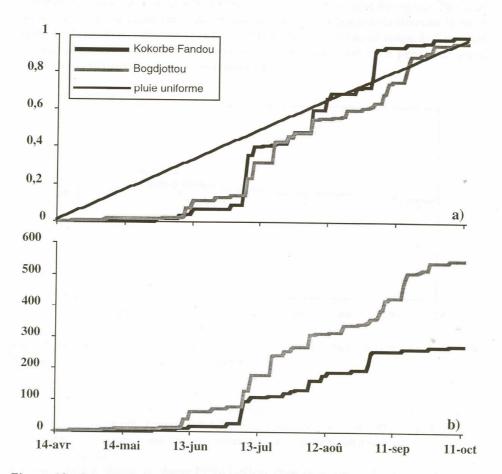


Figure 18: Comparaison de l'évolution du cumul pluviométrique entre Kokorbe Fandou et Bogdjottou entre le 15 avril et le 15 octobre:

- a) cumul normé et comparaison avec une pluie théorique uniforme;
- b) cumul non normé.

3.3 Petits pas de temps

La base de données spatialisées dont on dispose, permet de travailler à un pas de temps minimal de 5 minutes. On peut donc étudier avec une résolution relativement fine d'une part, la propagation des systèmes précipitants sur le degré carré et, d'autre part, la déformation du hyétogramme aux différentes stations touchées.

Durant la saison 1997, un certain nombres de systèmes convectifs de mésoéchelle sont passés au dessus du degré carré, mais peu ont montré une structure organisée comparable à celle d'une ligne de grain (marquage net d'un front nord-sud se déplaçant vers l'est à la vitesse de déplacement d'environ 40-60 km.h⁻¹). Cependant, la ligne de grain du 26 juillet, même si elle n'a pas donné une quantité moyenne importante présente la structure la mieux organisée. Outre la visualisation spatiale de la ligne de grain au pas de temps de 5 minutes, un transect est-ouest de 5 stations disposées au centre du degré carré permet de suivre l'évolution du hyétogramme stationnel (**figure 19**).

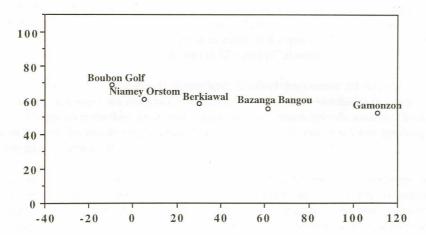


Figure 19: Localisation des stations du transect utilisé pour suivre l'évolution des hyétogrammes de l'événement du 26 juin 1997.

L'épisode choisi, qui se situe le 26 juillet, a donné une lame d'eau moyenne de 16,2 mm sur le degré carré (9ème plus forte quantité d'eau de la saison 1997), et 100 % des stations ont été touchées. Les cumuls sur les différentes stations s'échelonnent entre 1,5 et 36,5 mm (Kaligorou - n°61).

La convection a abordé le réseau EPSAT-Niger dans sa partie nord-est, à la station de Kaligorou, sa durée totale sur la zone a été de 4h20, mais on a étudié simplement le déplacement de la partie frontale sur la zone du degré carré sensus-stricto et cela, sur une durée d'environ 2h20 (figures 20, 21).

Le front a touché le degré carré à 1h15 du matin et il va rester stationnaire durant les 15 premières minutes. La propagation va se poursuivre ensuite vers l'ouest où durant une trentaine de minutes le front va s'organiser progressivement et ainsi occuper toute la partie est du degré carré. On peut aussi distinguer à l'intérieur de la ligne deux amas de cellules convectives très actives apportant jusqu'à 7 mm en 5 minutes soit une intensité de 84 mm.h⁻¹. Vers 2h25, la partie du front la plus au nord du degré carré semble faiblir jusqu'à disparaître, il est fort probable en fait que le front s'est étiré vers le nord et une scission du

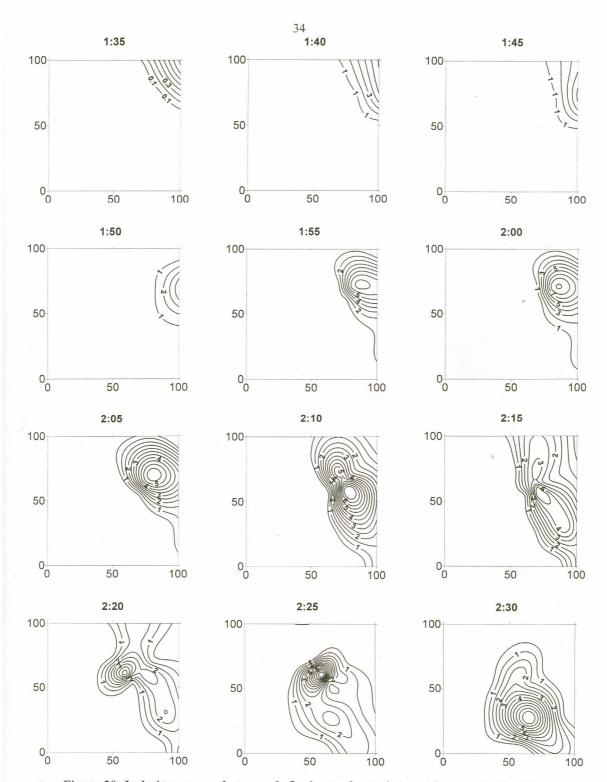
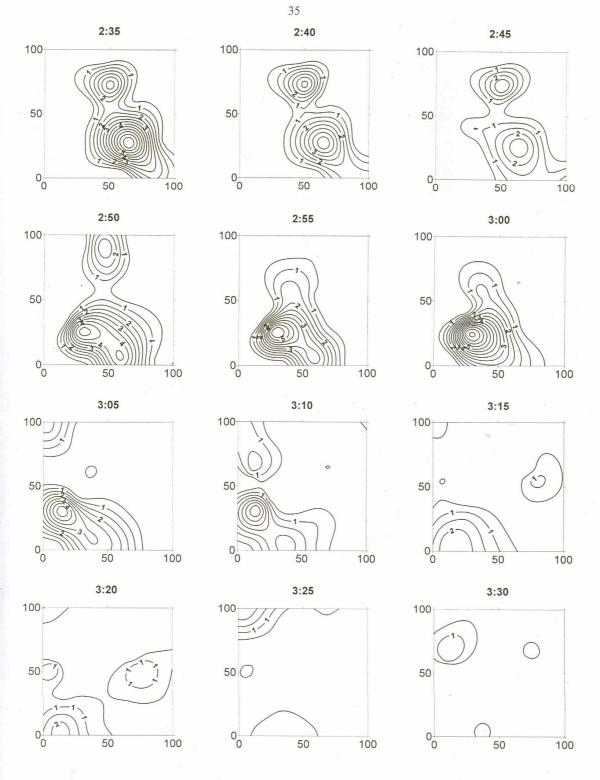
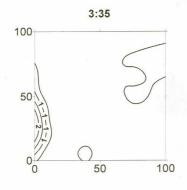
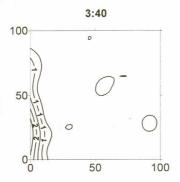
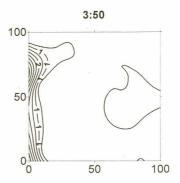
front s'est effectuée avec entre les deux une zone de très faible pluviosité, zone qui coïncide avec le nord du site. C'est vers 3h55 que l'on note la disparition effective du front de la zone du degré carré. La partie stratiforme du système, non représentée sur les cartes d'isohyètes, sera détectée par le réseau jusqu'à 5h50, son apport est non négligeable car elle contribuera à 20 - 40 % du cumul stationnel. Le front a traversé le degré carré en 2 heures 20 minutes, soit à une vitesse moyenne de 43 km.h-1. Les hyétogrammes (pas de temps 15 minutes) sur le transect retracent bien le sens du déplacement du système (front et début de traîne). Si la durée de passage du front est globalement conservée sur 4 stations sur 5, la forme du hyétogramme est par contre très irrégulière d'une station à l'autre avec une tendance à la disparition complète du pic du hyétogramme jusqu'à la station de Niamey Orstom et ensuite un regain d'activité convectif à Boubon golf, la station la plus à l'ouest de la zone. Les cumuls totaux de l'épisode et les cumuls sur les 2h20 correspondant au passage du front pour les 5 stations sont respectivement d'est en ouest de 8,5 mm (10,5 mm), 10,0 mm (12,5 mm), 4,5 mm (7,5 mm), 2,5 mm (4,0 mm) et 12,5 mm (17,0 mm).

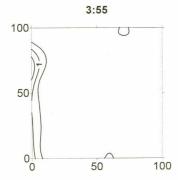
En dernier lieu, à côté des études de dynamique, le calcul des cumuls sur de petits pas de temps permet également une analyse fréquentielle. Les maximums absolus de la saison 1997 ont été calculés en compilant les cumuls maximaux de chaque épisode majeurs (issus du **tableau 2**) pour des pas de temps allant de 5, 10, 15, 30 et 60 minutes. Cette synthèse est reportée dans le **tableau 10**.

On a comparé les périodes de retour observées en 1997, à différents pas de temps, avec celles obtenues pour les années 1990-96. A la vue de ce tableau, on peut émettre quelques remarques. Au pas de temps de l'événement, la quantité maximale de pluie enregistrée d'une année sur l'autre, peut varier du simple au double. Pour des pas de temps plus petits la différence est beaucoup plus faible, sauf pour le pas de temps de 5 minutes, mais en tout état de cause, cette variabilité entraîne forcément un calcul des périodes de retour erroné si on travaille uniquement avec une station de référence.

Tableau 10: Périodes de retour des maximums enregistrés sur le réseau EPSAT-NIGER en 1997, calculées en prenant la série pluviographique de Niamey-Aéroport (1946-1983) comme référence (Bouvier, 1986). On a fait figurer entre parenthèse, les valeurs du cumul maximal et la période de retour associée pour les années 1990 à 1996.

Durée en mn	Quantité en mm	Station	Date-évt	Période de retour série Niamey-Aéroport
5	21,5 (30- 17- 29- 15- 15- 16- 16)	IH Jachère	05/08	3,9 (200- 7- 166- 4- 3- 5- 5)
10	32,7 (39- 31- 38- 27- 27- 32- 29)	IH Jachère	05/08	19,3 (150- 28- 224- 11- 12- 38- 17)
15	36,0 (52 - 41- 42- 39- 40- 44- 40)	IH Jachère	05/08	24,0 (331- 32- 33- 40- 20- 24- 53)
30	59,4 (66- 52- 63- 60- 76- 54- 64)	Berkiawel	29/07	35,1 (50- 9- 30- 22- 160- 11- 35)
60	85,8 (75- 85- 74- 81- 109-76- 88)	Fandouberi	29/07	42,2 (20- 34 -16 -25 -180- 17- 42)
sur l'averse	99,0 mm en 5h40' (102-162- 92- 95-120- 89-101)	Banizoumbou	29/07	


Figure 20: Isohyètes au pas de temps de 5 minutes du système précipitant du 26 juillet.

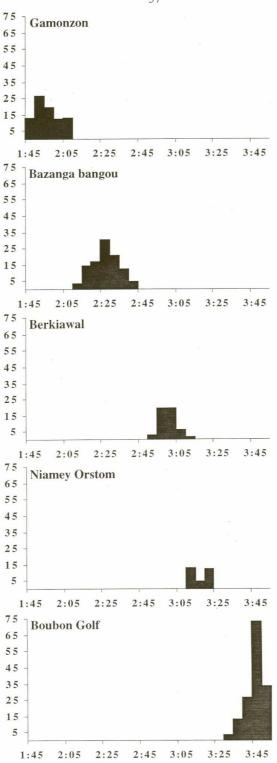


Figure 21: Hyétogramme de l'épisode du 26 juillet 1997 pour 5 stations sur un transect est-ouest.

CONCLUSIONS

Sur la zone EPSAT-Niger, la saison des pluies 1997 a été fortement déficitaire par rapport à la période 1968-94 et cela malgré un début précoce et une fin de saison tardive. La principale raison de ce déficit résulte de la baisse spectaculaire des précipitations durant le mois d'août tant en nombre d'événements qu'en quantité de pluie par événement. On notera aussi que la saison 1997 a montré à grande échelle un contraste étonnant avec dans le nord du Niger des valeurs de précipitations nettement plus élevées que sur la période 1968-94 alors qu'au sud un fort déficit était observé, déficit reconnue dans toute la zone sahélienne.

Les autres grandes caractéristiques de la climatologie sahélienne sont, cette année une fois de plus, mises en évidence :

- grande hétérogénéité spatiale à tous les pas de temps,
- inversion importante, au niveau local et même régional, du gradient climatologique de grande échelle,
- présence d'une petite sécheresse intra-saisonnière au mois de juillet.

REFERENCES

Bouvier, C., 1986: Etude du ruissellement urbain à Niamey, tome 3, Interprétation des données. Rapport général de convention ORSTOM/ MRH-DRE/ CIEH, 106p.

Goutorbe J.P., T. Lebel, A. Tinga, P. Bessemoulin, J. Brouwer, H. Dolman, E.T. Engman, J.H.C. Gash, M. Hoepffner, P. Kabat, Y.H. Kerr, B. Monteny, S. Prince, F. Saïd, P. Sellers, J. Wallace, 1994: HAPEX-SAHEL: a large-scale study of land-atmosphere interactions in the semi-arid tropics. Annales Geophysicae 12, p 53-64.

Lebel T., F. Cazenave, R. Gathelier, M. Gréard, R. Gualde, J. Kong, T. Valero, 1991: EPSAT-NIGER, Rapport de campagne 1990, ORSTOM-DMN, 65p.

Simpson J., Adler, R.F. and North G.R., 1988: A proposed Tropical Measuring Mission (TRMM) satellite. Bull. Am. Met. Soc. 69, p. 278-295.

Taupin J.D., A. Amani and T. Lebel, 1993a: Small scale spatial variability of the annual rainfall in the Sahel in: Bolle H.- J., Feddes, R.A. and Kalma, J. (Editors). Exchange Processes at the Land Surface for a Range of Space and Time Scales (Proceedings of the Yokohama.Symposium, july 1993). IAHS Publ. N° 212, p. 563-602.

Taupin J.D., T. Lebel, F. Cazenave, F. Chiron, R. Gathelier, M. Gréard, R. Gualde, J. Kong, T. Valero, 1992: EPSAT-NIGER, Rapport de campagne 1991, ORSTOM-DMN, 82p.

Taupin J.D., T. Lebel, F. Cazenave, M. Gréard, J. Kong, J. Lecocq, M. Adamson, N. d'Amato, A. Ben Mohamed, 1993b: EPSAT-NIGER, Rapport de campagne 1992, ORSTOM-DMN, 91p.

Taupin J.D., E. Bonef, M. Gréard, O. Ponseel, 1995a: EPSAT-NIGER-ARCOL, Rapport de campagne 1993, ORSTOM-DMN, 101 p.

Taupin J.D., E. Bonef, J. Robin, 1995b: EPSAT-NIGER- Suivi à long terme, Rapport de campagne 1994, ORSTOM-DMN, 81 p.

Taupin J.D., C. Laroche et J. Robin, 1996. EPSAT-NIGER suivi à long terme, Rapport de campagne 1995, ORSTOM-DMN, 82p.

Taupin J.D. et J. Robin, 1997. EPSAT-NIGER suivi à long terme, Rapport de campagne 1996, ORSTOM-DMN, 74p.

ANNEXES

ANNEXE 1. GESTION DU RESEAU DE PLUVIOGRAPHES ET INVENTAIRE DES PANNES

Coût de fonctionnement de la campagne 97

Chapitre 690

-Petit matériel (réinstallation-installation)	3.000 FF
- Batteries et régulateurs	4.000 FF
- Carburant-Essence-Gasoil-Huile	30.000 FF
- Déplacement personnel local (164 jours de tournées)	9.000 FF
- Photocopie-papetterie-disquette-téléphone	5.000 FF
- Maintenance informatique	5.000 FF
Total	56.000 FF

Chapitre 644

Gardiennage des stations

23.000 FF

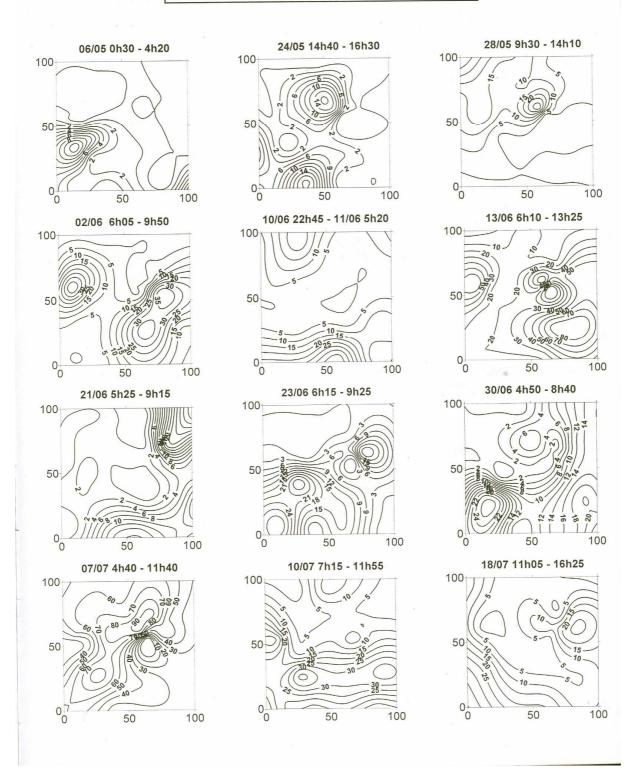
Au cours de la saison 97, les équipes de terrain ont effectué 195 jours de tournées pour les réinstallations, les nouvelles installations, les visites de contrôle et d'entretien, et le démontage des stations, ce qui représente 50.000 km.

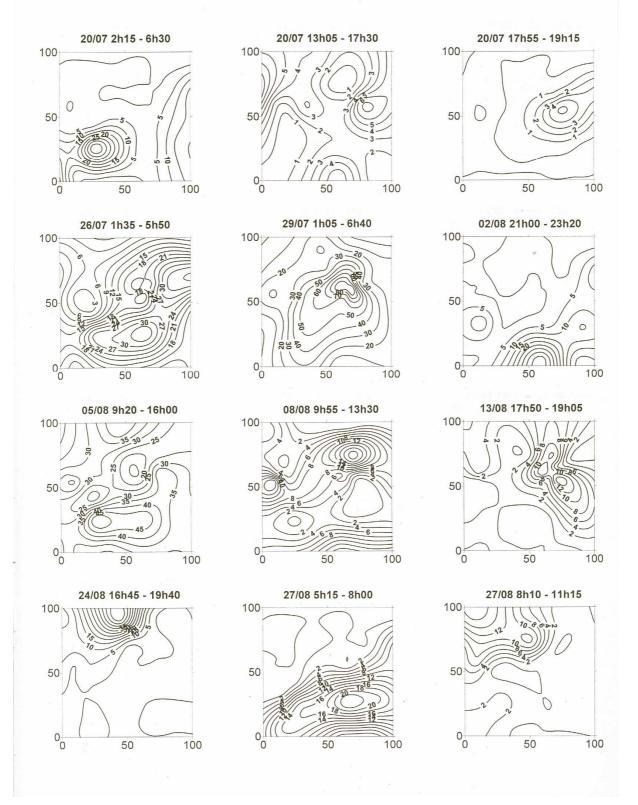
- Les réinstallations ont débuté le 19-03-1997 (TORODI),
- La fin du démontage a eu lieu le 03-11-1997 (BOGDJOTTOU).

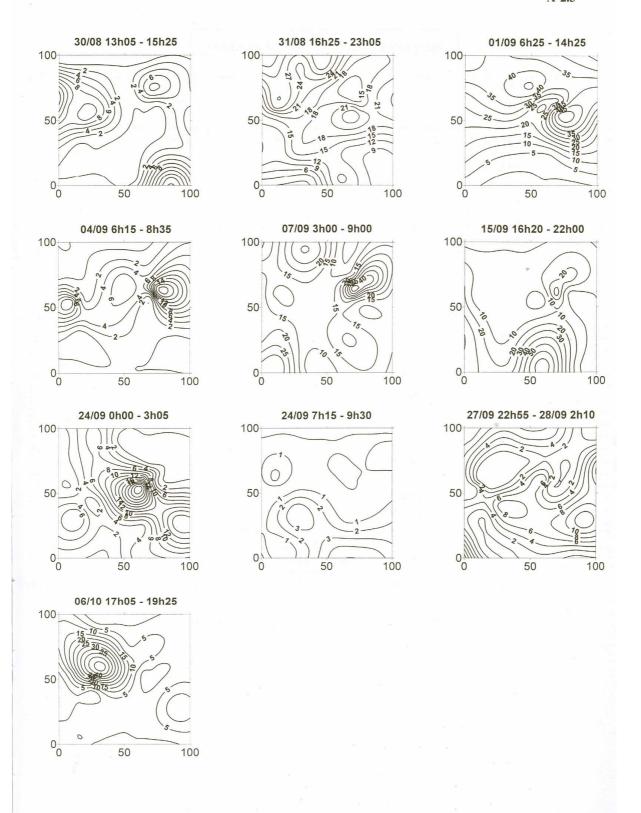
Jours de fonctionnement des stations :

Jours de fonctionnement	7435			
Jours de panne	173			
Jours d'enregistrement	7262			

Causes des pannes en détail


Pluvio	
entonnoir bouché	
augets bloqués	116
vandalisme	
Alimentation	
vol panneau solaire	32
vol batterie	12
E	
Enregistreur	2.00
œdipe défectueux	
cartouche défectueuse	13
4 X	
<u>Total</u>	173


Causes des pannes	Nombre de jours	% des pannes
Pluvio	116	67,0
Alimentation	44	25,5
Enregistreur	13	7,5


Tableau A-1.1: Jours de fonctionnement et causes de pannes.

Station	Jours	Jours	Jours	%Jours	CAUSES PANNES
	fonctionnement	pannes	enregistrés	pannes	
Alkama	191	18	173	10.0	usl manness seleine
Banizoumbou	217	0	217	0,0	vol panneau solaire
	199	0	199		
Bazanga	198	0	199	0,0	
Beri Koira	100.000.000	14		0,0	
Berkiawel	218		204	4,6	vol panneau solaire
Bogdjottou	229	0	229	0,0	
Bololadie	227	41	186	18,0	augets bloqués
Boubon	204	0	204	0,0	
Darey	196	0	196	0,0	
Debere Gati	213	0	213	0,0	7 - 2 - 5
Fandou Beri	217	0	217	0,0	
Gamonzon	204	0	204	0,0	
Gardama	201	0	201	0,0	Δ
Gorou Goussa	201	0	201	0,0	
Guilahel	213	0	213	0,0	
Hama Jachere	217	0	217	0,0	
Harikanassou	204	0	204	0,0	
IH Jachere	213	0	213	0,0	2 16 4
Kafina	66	40	26	60,6	faux contact aux augets
Kaligorou	191	20	171	10,5	augets bloqués
Kare	213	0	213	0,0	
Kokorbe Fandou	196	0	196	0,0	
Kollo	211	0	211	0,0	
Koure Kobade	204	15	189	7,3	faux contact aux augets
Koure Sud	204	0	204	0,0	
Koyria	204	12	192	5,9	vol batterie
Mali Diibo	217	0	217	0,0	To Satterie
Massi Koubou	198	0	198	0,0	
Niamey Aeroport	239	0	239	0,0	
Niamey IRI	239	13	226	5,4	cartouche H.S.
Niamey Orstom	247	0	247	0,0	
Sandideye	204	0	204	0,0	
Tanaberi	211	0	204	0,0	
Torodi	229	0	229	0,0	
Wankama	196	0	196	200 4 300	
	204	0		0,0	
Yillade	204	U	204	0,0	

ANNEXE 2. ISOHYETES DES 34 EPISODES DE LA SAISON 1997

ANNEXE 3. TABLEAUX DE CUMULS JOURNALIERS

Pluies journalieres corrigees par les valeurs SEAU (de 6 h a 6 h) en 1/10 mm Station: Banizoumbou en 1997

VOI	Oct	Sept	Aout	Juil	Juin	Mai	Avr	Mars	Fev N	our Jan
		402.								1 .
		na Yu	5.		195.					2 .
				P 4						3 .
		43.			14.					4 .
			300.			61.		(=)		5.
	9.	312.	5.	39.				-		6 .
	9.	14.		418.						7 .
			29.		5.	(/•1				8 .
	_ *		5.							9 .
			•	52.		12.				. 0
				-				9.00		1.
	•									.2 .
			129.		283.	8.				.3 .
	•			-			•			.4 .
		288.				4.		1,00		.5 .
		24.		-			:	-		.6 .
							:	5.00		7 .
	1.0			181.			**			. 8
		020		5.	· .					9 .
			•	81.						20.
				,	29.	•				21 .
	•	53.	•		40	•	•			22 .
		55.	10.00		43.		•			23 .
			5.	220			•	15.		24 .
	•	•	5.	229.	•			47.		25 .
			14.		10			*		26 .
			14.	943.	19. 5.			•		27 .
		229.		343.	٥.	51.				28 .
			•		10	*	: • ·		. ^ ^ ^ ^ ^ .	29 .
^^^		^^^^	212		48.		· ^ ^ ^ · ·	·/	. ~~~~~.	30.
								15.		31 .
	18.	1365.	705.	1948.	641.	136.	, h.	77.		Cum.
	9.	402.	300.	943.	283.	61.	10.	47.		 Max.

Pluies journalieres corrigees par les valeurs SEAU (de 6 h a 6 h) en 1/10 mm Station : Gorou Goussa en 1997

No	Oct	Sept	Aout	Juil	Juin	Mai	Avr I	S	Mars	Fev	Jan	Jour
		429.						 				1 .
	÷	40.	190.									2 .
		•		40.								3 .
		5.0			10.							4 .
			205.					-				5.
		56.			:::							6.
-	•	20.		513.	ş • ş		3.0					7.
			75.	•	(a)							8 .
												9 .
	*			17.	55.	7.	•					10 .
		-	•				•	-				11 .
		-				3.						12 .
-	•	•	65.		35.							13 .
-				62.	•							14 .
_		20.										15 .
-		•	70.									16 .
_			10.		15.							17 .
-			20.	180.	1.00							18 .
-												19 .
-				79.	-							20 .
_				•	•	*	10.					21 .
_		9			•							22 .
_		25.		6.			*					23 .
-			40.									24 .
-				79.								25 .
												26 .
		111.	167.									27 .
_				22.		293.						28 .
_			*	•								29 .
	,	^^^^^.			^^^^							30 .
			343.						^	. ^ ^ ^ ^		31 .
	108.	701.	1185.	998.	115.	303.	10.					Cum.
	108.	429.	343.	513.	55.	293.	10.					Max.

Pluies journalieres corrigees par les valeurs SEAU (de 6 h a 6 h) en 1/10 mm Station : Kokorbe Fandou en 1997

Jour	Jan		Fev	M	lars	Avr	Ма		Juin	Juil	Aout	Sept	Oct	No
1 .						 						335.		
2 .												50.		
3 .														
4 .														
5.								5.			324.			
6.										390.		25.	20	
7 .									37.	328.		5.	5	
8 .														
9.														
LO.		2					*		11.	126.				
11 .											160.			
12 .														
13 .							*	•	80.		85.			
14 .										15.				
15 .							*					44.		
16 .														
17 .											.*.			
18 .										10.				
19 .									•		-			
20 .									•	15.				
21 .							• "	51.00			•			
22 .												16		
23 .								-			•	10.		
24 .											65.			
25 .								•		98.		8 (*)		
26 .														
27 .											20.	64.		
28 .							(4)	48.		79.				
29 .			^^^^^							щ.		5.		
30.						^^^^			71.	5.		^^^^^.		
31 .			^^^^	^.		 	^ .				195.			
Cum.								53.	199.	1066.	849.	538.	25	
Max.						 		48.	80.	390.	324.	335.	20	1

Pluies journalieres corrigees par les valeurs SEAU (de 6 h a 6 h) en 1/10 mm Station : Niamey Aeroport en 1997

======= Jour Jan	====== Fev	======: Mars		======	======	======	======	======	======	====
		Mais	Avr	Mai	Juin	Juil	Aout	Sept	Oct	Nov
1 .								268.		
2 .					225.			21.		
3 .										
5 .	*:			130.	20.			31.		
6 .		•					309.	10.	200	
7 .				٠.		362.		82.	300.	
8 .							73.	02.		
9 .										
10 .					15.	119.				
12 .			•		*					
13 .			•	75.	240.					
14 .	•			, , .	5.	•	•	*		
15	•							41.		
16	•									
17 . 18 .	•									
19 .	•					21.	•			
20 .						16. 21.	20.			
21 .			45.		41.	21.	20.			
22						•				
23	. ,				71.			36.		
24			(*)	31.			40.	5.	100.	
26	•	. 21. . 26.		•		15.	5.			
27		. 20.	3 ∓ 0		10.		10.			
28		20.		179.		191.	10.			
29	^^^^^							15.		
30	^^^^^	5.			5.	*	119.			
31		***	^^^^^	. ^			119. 196.		.′	
Cum		72.	45.	420.	632.	755.	777.	509.	400.	
Max		26.	45.	179.	240.	362.	309.	268.	300.	

Pluies journalieres corrigees par les valeurs SEAU (de 6 h a 6 h) en 1/10 mm

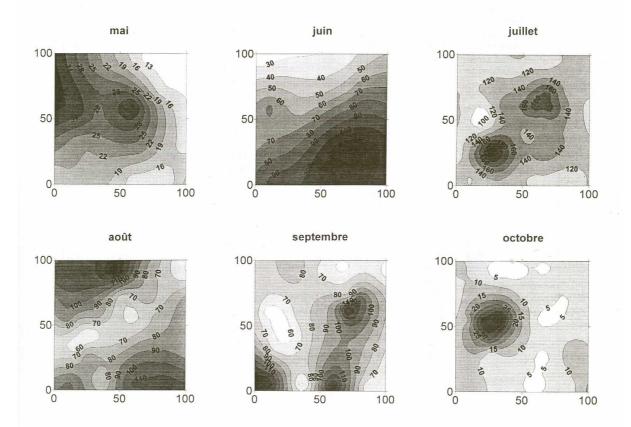
Station: Niamey ORSTOM en 1997

our Jan	Fev	Mars	Avr	Mai	Juin	Juil	Aout	Sept	Oct	No
1 .								280.		
2 .	•	•			440.			200.		
3 .	•	•			110.	•				
4 .	•				110.			68.		
5 .	•	•		137.	110.		345.	00.		
6 .	•	•		137.			313.		190.	
7 .	•				•	455.		85.	150.	
8 .					•	155.	80.	05.		
9 .	•			•			4.			
0.	*			•	50.	225.	Τ.		÷	
	•	•			50.	225.		•		
1 .	•	•		•				•		
.2 .	*	•			680.		31.	•		
.3 .	•	•		25.	000.		21.	•		
.4 .				25.				23.		
.5 .	•	*		9.				23.		
.6 .		*		•						
.7 .				•	*	٠.			-	-
. 8		. 4			•	6.	10.			-
.9 .		•		1.0			•	-	-	_
20.	•	*				25.				-
21 .			. 15.	:•				•		
22 .										-
23 .					28.		78.	5.		
24 .		. 4		19.		*	15.	20.	8.	
25 .		. 17				40.				
26 .	*						5.			
27 .		. 10		_ •			75.	5.		
. 8		. 5		175.		284.				
.9 .	. ^ ^ ^ ^ ^ ^					5.		5.		-
30 .	. ^ ^ ^ ^ ^ ^						81.			
31 .	. ^ ^ ^ ^ ^	^ . 52	. ^ ^ ^ ^ .	•	^^^^^.		262.	^^^^^.		^^
um.		. 92	. 15.	365.	1308.	1040.	986.	491.	198.	
		. 52	. 15.	175.	680.	455.	345.	280.	190.	

Pluies journalieres corrigees par les valeurs SEAU (de 6 h a 6 h) en 1/10 mm Station : Torodi en 1997

========					======	======	======	======	========
Jour Jan	Fev	Mars	Avr	Mai 	Juin	Juil	Aout	Sept	Oct Nov
1								119.	
2					27.			5.	
3								10.	
4								10.	
5							237.		
6				5.					
7					5.	263.		407.	
8							5.		
9						10.		20.	
10					220.	292.			
11				10.			15.	•	
12								•	
13					225.				
14			•		225.			•	
15								383.	
16	•		•		•			44.	.,
17			•	•	•	•		177.	
18				*			4.0	1//.	
19				•	•	4.60	49.		
			•		•	467.	1.50		
20						67.	158.		
21					100				
22			3 - 8	*			*	49.	
23					50.		•	5.	
24		. 83.		5.				5.	
25		. 34.			5.	69.		5.	
26						5.	<i>ti</i> •		
27		. 34.					79.	83.	
28		. 34.	-	27.		336.			
29	. ^ ^ ^ ^ ^ /	14				10.		123.	
30		٠		16.	10.			5.	
31	.^^^^	`	^^^^^.	• •	^^^^		40.	5.	.^^^
Cum.		. 199.		63.	542.	1519.	583.	1450.	,
Max.		. 83.		27.	225.	467.	237.	407.	

Pluies journalieres corrigees par les valeurs SEAU (de 6 h a 6 h) en 1/10 mm Station : Yiladde en 1997


Jour (Jan	Fev	Mars	Avr	Mai 	Juin	Juil	Aout	Sept	Oct	Nov
1											
2	-					115.			2		
4									-		
5											
6								318.	48.		
7						11.11112		1. 1	140.	46.	
8						5	309.		27.		
9								141.			
10								5.			
11					4.	82.	97.			*	
12								151.			
13									11000		
14	п '					554.					
15						36.	57.				
16					6.		3.0	•	43.		
17	11										
18								44.	5.	20.	
19							91.				
20							211.				
21						108.	29.	16.			
22	-					100.			٠.		
23						5.			97.		
24	- 4			•	23.	٥.		5.	71.		
25					25.	· •	115.	5.	46.		
26					•		113.	•	•		
27					•	•		22.	•		
28							99.	22.			
29		^^^^^				88.	55.		142.		
30		^^^^						360.	142.		
31		^^^^		.^^^^.	11.	118.	2-6	93.^	^^^^	^	~~~
Cum.					44.	1106.	1008.	1155.	619.	 66.	
ſax.						554.		360.		 46.	

ANNEXE 4. CUMULS MENSUELS

Tableau A-4.1: Cumuls mensuels enregistrés aux 36 stations du réseau (cône de réception 1,50 m au-dessus du sol) pour les mois d'avril à octobre 1997.

Station	n° epsat	avril	mai	juin	juillet	août	septembre	octobre
Alkama	43	0.0	11,1	lacune	lacune	45,8	48,7	7,4
Banizoumbou	11	0.0	13,6	64,1	194,8	70,5	136,5	1,8
Bazanga Bangou	5	0.0	35,3	84,9	162,3	57,1	98,9	2,0
Beri Koira	21	16.0	30,7	33,6	145,8	62,3	80,0	7.8
Berkiawel	28	2,0	18,2	28,1	146,4	85,0	74,5	51.0
Bogdjottou	412	4.0	8,5	68.0	187,9	81,4	189,9	25,3
Bololadie	84	0,0	38,3	53,4	85,0	59,0	lacune	lacune
Boubon Golf	85	2,9	35,4	47,4	120,5	88,2	89,7	0,0
Darey	18	0,0	3,3	102,3	140,4	67,5	120.7	3,4
Debere Gati	25	1,0	25,8	112.4	119.8	101,6	139,8	13,6
Fandou Beri	9	0,5	63,4	70,8	197,1	57,0	96,4	6,7
Gamonzon	34	0,3	0,7	72.0	88.9	81,2	61,0	2,8
Gardana Kouara	50	1,3	19,7	33,6	108,5	117,1	90,0	0,0
Gorou Goussa	80	1,0	30,3	11.5	99,8	118.5	70,1	10,8
Guilahel	49	2,3	17,1	58,7	143,5	52,2	63,4	18,9
Hama jachère	411	0,0	33,4	99,8	169,1	68,3	128,9	2,5
Harikanassou	41	0,0	13,3	136.2	134,7	89,9	78,8	15,9
IH Jachere hapex 1	105	0.0	18,2	70,6	246,6	86,9	69,3	2,8
Kafina	413	lacune	lacune	lacune	lacune	lacune	lacune	lacune
Kaligorou	61	0.0	18,2	lacune	lacune	97,9	70,5	0,0
Kare	29	0,0	24,8	89,3	139,8	69.5	50,9	6,6
Kokorbe Fandou	73	0.0	5,3	19,9	106,6	84,9	53,8	2,5
Kollo	54	12,5	23,9	60,5	130,3	47.2	55,5	36,2
Koure Kobade	26	0,0	41,5	75.2	131,4	118,1	58,6	37.9
Koure Sud	51	0,0	29,5	150,9	154,5	92,9	106,6	1,5
Koyria	82	0,0	62,5	21,2	149,4	88,8	80,1	7,1
Mali Djibo	269	0,0	22,9	76.6	171,8	66,2	164,8	4,0
Massi Koubou	78	0,0	17,4	32,6	117.6	143,3	70.2	1,0
Niamey Aeroport	94	4,5	42,0		75.5	77,7	50,9	40,0
Niamey IRI	83	2,6	lacune	lacune	109,8	98.1	62,6	14,0
Niamey ORSTOM	70	1,5	36,5	130,8	104,0	98,6	49,1	19,8
Sandideye	57	0.0	12,4	92,1	114,7	83,1	50,9	3,8
Tanaberi	32	0,0	7,0	135,6	114,1	112,9	146,7	0,0
Torodi	86	0,0	6,3	54,2	151,9	58,3	145,0	0,0
Wankama	116	0,0	13.9	31,0	183,2	78,0	78,2	8,4
Yillade	35	0,0	4,4	110,6	100,8	115,5	61.9	6,6

Figure A-4.1: Cartes mensuelles d'isohyètes obtenues par krigeage des 36 stations du réseau (cône de réception 1,50 m au-dessus du sol) pour les mois de mai à octobre 1997.

ANNEXE 5. CUMULS SAISONNIERS AUX POSTES DU RESEAU DU NIGER

long.	lat.	mm	station	long.	lat.	mm	station
3.43	14.95	218,2	ABALA	6.90	14.10	281,2	KORNAKA
7.98	16.97	214,1	AGADEZ	3.73	12.90	455,4	LIDO
0.85	14.75	217,3	AYOROU	3.73	13.60	470,9	LOGA
1.65	13.78	204.6	BAC-FARIE	5.98	14.12	482,2	
5.08	14.72	254,7	BAMBEYE	7.15	13.31	482,2	MADADOUNEA
8.88	13.18	509,6	BANDE HAOUSSA	8.93	12.98	547,6	MADAROUNFA MAGARIA
6.10	13.72	444,7	BANGUI	11.98	13.23		MAINE-SOROA
8.07	14.65	192,8	BELBEDJI	5.50	13.23	319,6 380,3	MALBAZA
2.87	12.75	437,3	BEYLANDE	1.88	13.62	586,7	MALGOROU
12.92	18.68	28,4	BILMA	9.60	13.02		
2.90	13.08	388,6	BIRNI NGOUARE	2.04	14.80	514,1 143,8	MALLAOUA
5.28	13.80	426,3	BIRNI N KONNI	7.08	13.47		MANGAIZE
3.07	14.00	230,4	BONKOUKOU	7.07	13.47	497,7	MARADI AERO MARAKA
13.32	14.72	120,3	BOSSO	8.46	13.41	635,1	MATAMAYE
12.27	13.17	239,1	BOUDOUM	7.70		466,1	
6.05	14.42	370,8	BOUZA	100000000000000000000000000000000000000	13.98	319,4	MAYAHI
11.40	13.42	100 00000000000000000000000000000000000	CHERI	1.13	14.43	262,9	MEHANA
3.43	13.42	281,4		9.15	13.72	372,0	MYRRIAH
6.45	14.42	218,2	CHIKAL	2.15	13.48	409,6	NIAMEY AEROPORT
		245,7	DAKORO	2.13	13.50	471,0	NIAMEY VILLE
3.07	13.90	318,3	DAMANA	13.12	14.25	152,0	N GUIGMI
8.33	13.17	584,2	DAN BARTO	2.08	14.32	271,9	OUALLAM
1.15	15.55	314,2	DARGOL	8.13	14.02	327,8	OURAFANE
12.62	13.42	306,7	DIFFA	7.35	13.57	338,8	SAE SABOUA
7.13	13.40	491,9	DJIRATAWA	1.40	14.28	236,0	SAKOIRA
9.20	12.54	485,0	DOGO	8.50	13.13	604,7	SASSOUMBROUM
4.35	14.07	202,6	DONGONKIRIA	2.35	13.10	376,9	SAY
0.28	14.68	202,1	DOLBEL	3.28	12.10	593,7	SIA
3.18	13.02	394,4	DOSSO	2.13	14.13	306,2	SIMIRI
9.31	13.56	450,0	DROUM MALORI	7.52	14.70	221,6	SOLI
2.85	12.85	336,8	FABIDJI	6.42	13.60	401,9	SOULOULOU
2.51	12.32	423,5	FALMEY	8.93	17.41	56,6	TABELOT
3.35	13.31	378,2	FALOUEL	3.30	14.90	306,6	TAHOUA
2.88	13.85	259,7	FANDOU MAYAKI	5.65	14.81	367,1	TAMASKE
3.32	14.35	283,8	FILINGUE	8.82	14.95	140,7	TANOUT
5.66	13.96	517,3	GALMI	5.70	16.86	175,8	TASSARA
3.45	11.88	630,2	GAYA	7.45	13,33	373,1	TCHADAOUA
7.92	13.52	475,8	GAZAOUA	0.82	14.03	249,2	TERA
2.08	13.86	342,4	GOUBE	7.98	13.75	389,0	TESSAOUA
10.30	13.98	297,9	GOURE	1.45	14.20	306,6	TILLABERY
6.76	13.66	431,3	GUIDAM ROUDJI	4.78	16.13	193,2	TILLIA
5.31	14.02	463,2	GUIDAN IDDER	1.80	13.12	466,0	TORODI
9.55	13.68	314,1	GUIDIMOUNI	3.28	14.50	183,0	TOUKOUNOUS
2.40	13.55	400,2	HAMDALLAYE	9.03	13.97	284,8	TOUMNIA
2.83	13.18	404,5	HARIKANASSOU	9.28	13.37	390,4	WACHA
8.38	19.08	122,6	IFEROUANE	8.40	14.35	264,7	YAGAGI
12.45	13.48	250,4	KABELAWA	3.57	12.25	662,9	YELOU
7.92	13.52	397,1	KANEMBAKATCHE	1.88	13.62	425,0	ZEBANFITI
5.75	15.23	254,7	KAO	8.98	13.78	271,0	ZINDER AEROPORT
5.67	14.47	323,4	KAOUARA ABDOU	8.98	13.78	319,5	ZINDER VILLE
2.35	13.30	300,8	KOLO				F

ANNEXE 6. LISTE DES VARIOGRAMMES MODELISES

1- Variogrammes par evenements

No evenement	Modele	Pepite	Portee	Palier
1	linéaire	0	0,12	
2	sphérique	0	30	30
3	linéaire	0	1,6	30
4	sphérique	0	40	130
5		0	60	100
6	sphérique sphérique	0	40	500
7	linéaire	10		300
8		0	0,6 25	110
9	exponentiel linéaire	15		110
10		0	0,8 4	480
	sphérique		45	
11	sphérique	0		175
12	linéaire	40	0,3	
13	linéaire	40	2,5	
14	sphérique	0	35	6
15	sphérique	0	35	1,7
16	sphérique	0	50	100
17	sphérique	0	40	800
18	sphérique	0	40	100
19	sphérique	0	10	80
20	sphérique	0	10	35
21	sphérique	0	40	20
22	sphérique	0	40	130
23	sphérique	0	40	40
24	sphérique	0	30	15
25	sphérique	O	45	30
26	linéaire	10	0,6	
27	sphérique	0	80	250
28	sphérique	0	10	25
29	sphérique	O	30	70
30	sphérique	0	60	350
31	sphérique	0	10	37
32	sphérique	0	60	2,5
33	sphérique	0	40	30
34	sphérique	0	30	150

2- Variogrammes decadaires

No decade	Modele	Pepite	Portee	Palier
climatique	exponentiel	0,2	1,05	10
1 11-	sphérique	0	20	17
2 21-30/04	sphérique	0	20	15
3 01-10/05	sphérique	0	20	250
4 11-20/05	sphérique	0	20	200
5 21-31/05	linéaire	200	4	
6 01-10/06	sphérique	0	40	1200
7 11-20/06	sphérique	0	40	800
8 21-30/06	linéaire	200	5	
9 01-10/07	linnéaire	700	10	
10 11-20/07	linéaire	500	10	
11 21-31/07	sphérique	0	35	3700
12 01-10/08	linéaire	200	4	
13 11-20/08	sphérique	0	45	300
14 21-31/08	linéaire	200	12	
15 01-10/09	sphérique	0	50	850
16 11-20/09	sphérique	0	50	1500
17 21-30/09	sphérique	0	20	400
18 01-10/10	sphérique	0	35	600
19 11-20/10	linéaire	50	2	

3- Variogrammes mensuels

Mois	Modele	Pepite	Portee	Palier
Mai	linéaire	100	2,5	
Juin	linéaire	500	10	
Juillet	sphérique	0	30	1500
Aout	sphérique	0	55	650
Septembre	exponentiel	0	20	1200
octobre	exponentiel	0	10	180

ANNEXE 7. LISTE DES FICHIERS CREES LORS DU TRAITEMENT DES DONNEES PLUVIOGRAPHIQUES

Tableau A-7.1: Liste des fichiers .oe3, images cartouches.

		, ,			
alkama1	oe3	gardana1	oe3	kouresu3	oe3
alkama2	oe3	gardana2	oe3	kouresu4	oe3
alkama3	oe3	gardana3	oe3	koyrial	oe3
alkama4	oe3	gardana4	oe3	koyria2	oe3
alkama5	oe3	gorougo1	oe3	koyria3	oe3
banizou1	oe3	gorougo2	oe3	koyria4	oe3
banizou2	oe3	gorougo3	oe3	koyria5	oe3
banizou3	oe3	gorougo4	oe3	malidji1	oe3
banizou4	oe3	guilahe1	oe3	malidji2	oe3
bazanga1	oe3	guilahe2	oe3	malidji3	oe3
bazanga2	oe3	guilahe3	oe3	malidji4	oe3
bazanga3	oe3	guilahe4	oe3	massiko1	oe3
bazanga4	oe3	hajache1	oe3	massiko2	oe3
bazanga5	oe3	hajache2	oe3	massiko3	oe3
berikoi1		hajache3	oe3	massiko4	oe3
berikoi2	oe3	hajache4	oe3	massiko5	
berikoi3	oe3	harikan1			oe3
	oe3	harikan2	oe3	niameya1	oe3
berikoi4	oe3		oe3	niameya2	oe3
berikoi5	oe3	harikan3	oe3	niameya3	oe3
berkiaw1	oe3	harikan4	oe3	niameya4	oe3
berkiaw2	oe3	ihjache1	oe3	niameya5	oe3
berkiaw3	oe3	ihjache2	oe3	orstom1	oe3
berkiaw4	oe3	ihjache3	oe3	orstom2	oe3
berkiaw5	oe3	ihjache4	oe3	orstom3	oe3
bogdjot1	oe3	iri l	oe3	orstom4	oe3
bogdjot2	oe3	iri2	oe3	orstom5	oe3
bogdjot3	oe3	iri3	oe3	sandide1	oe3
bogdjot4	oe3	iri4	oe3	sandide2	oe3
bololad1	oe3	iri5	oe3	sandide3	oe3
bololad2	oe3	kafinal	oe3	sandide4	oe3
bololad3	oe3	kaligorl	oe3	tanaber1	oe3
bololad4	oe3	kaligor2	oe3	tanaber2	oe3
boubon1	oe3	kaligor3	oe3	tanaber3	oe3
boubon2	oe3	kaligor4	oe3	tanaber4	oe3
boubon3	oe3	kare l	oe3	torodi1	oe3
boubon4	oe3	kare2	oe3	torodi2	oe3
darey l	oe3	kare3	oe3	torodi3	oe3
darey2	oe3	kare4	oe3	torodi4	oe3
darey3	oe3	kokorbe1	oe3	wankama l	oe3
darey4	oe3	kokorbe2	oe3	wankama2	oe3
deberegl	oe3	kokorbe3	oe3	wankama3	oe3
debereg2	oe3	kokorbe4	oe3	wankama4	oe3
debereg3	oe3	kollo1	oe3	yillade1	oe3
debereg4	oe3	kollo2	oe3	yillade2	oe3
fandoub1	oe3	kollo3	oe3	yillade3	oe3
fandoub2	oe3	kollo4	oe3	yillade4	oe3
fandoub3	oe3	koureko1	oe3		
fandoub4	oe3	koureko2	oe3		
gamonzo1	oe3	koureko3	oe3		
gamonzo2	oe3	koureko4	oe3		
gamonzo3	oe3	kouresu1	oe3		
gamonzo4	oe3	kouresu2	oe3		

Tableau A-7.2: Liste des fichiers .lab, images cartouches.

alkama1	lab	gardana1	lab	kouresu3	lab
alkama2	lab	gardana2	lab	kouresu4	lab
alkama3	lab	gardana3	lab	koyria1	lab
alkama4	lab	gardana4	lab	koyria2	lab
alkama5	lab	gorougo l	lab	koyria3	lab
banizou1	lab	gorougo2	lab	koyria4	lab
banizou2	lab	gorougo3	lab	koyria5	lab
banizou3	lab	gorougo4	lab	malidji1	lab
banizou4	lab	guilahe1	lab	malidji2	lab
bazanga1	lab	guilahe2	lab	malidji3	lab
bazanga2	lab	guilahe3	lab	malidji4	lab
bazanga3	lab	guilahe4	lab	massiko1	lab
bazanga4	lab	hajache1	lab	massiko2	lab
bazanga5	lab	hajache2	lab	massiko3	lab
berikoi1	lab	hajache3	lab	massiko4	lab
berikoi2	lab	hajache4	lab	massiko5	lab
berikoi3	lab	harikan 1	lab	niameya1	lab
berikoi4	lab	harikan2	lab	niameya2	lab
berikoi5	lab	harikan3	lab	niameya3	lab
berkiaw1	lab	harikan4	lab	niameya4	lab
berkiaw2	lab	ihjache1	lab	niameya5	lab
berkiaw3	lab	ihjache2	lab	orstom1	lab
berkiaw4	lab	ihjache3	lab	orstom2	lab
berkiaw5	lab	ihjache4	lab	orstom3	lab
bogdjot1	lab	iri1	lab	orstom4	lab
bogdjot2	lab	iri2	lab	orstom5	lab
bogdjot3	lab	iri3	lab	sandide1	lab
bogdjot4	lab	iri4	lab	sandide2	lab
bololad1	lab	iri5	lab	sandide3	lab
bololad2	lab	kafina1	lab	sandide4	lab
bololad3	lab	kaligor1	lab	tanaber1	lab
bololad4	lab	kaligor2	lab	tanaber2	lab
boubon1	lab	kaligor3	lab	tanaber3	lab
boubon2	lab	kaligor4	lab	tanaber4	lab
boubon3	lab	kare1	lab	torodi1	lab
boubon4	lab	kare2	lab	torodi2	lab
darey 1	lab	kare3	lab	torodi3	lab
darey2	lab	kare4	lab	torodi4	lab
darey3	lab	kokorbe1	lab	wankama1	lab
darey4	lab	kokorbe2	lab	wankama2	lab
debereg1	lab	kokorbe3	lab	wankama3	lab
debereg2	lab	kokorbe4	lab	wankama4	lab
debereg3	lab	kollo1	lab	villade1	lab
debereg4	lab	kollo2	lab	yillade2	lab
fandoub1	lab	kollo3	lab	yillade3	lab
fandoub2	lab	kollo4	lab	yillade4	lab
fandoub3	lab	koureko l	lab	5	
fandoub4	lab	koureko2	lab		
gamonzo1	lab	koureko3	lab		
gamonzo2	lab	koureko4	lab		
gamonzo3	lab	kouresu1	lab		
gamonzo4	lab	kouresu2	lab		

Tableau A-7.3: Liste des fichiers .txt, créés et gérés par BADINAGE, banque de données pluviographiques.

alkama banizou	txt txt	hajache harikan	txt txt	orstom sandide	txt txt
bazanga	txt	ihjache	txt	tanaber	txt
berikoi	txt	iri	txt	torodi	txt
berkiaw	txt	kafina	txt	wankama	txt
bogdjot	txt	kaligor	txt	yillade	txt
bololad	txt	kare	txt		
boubon	txt	kokorbe	txt		
darey	txt	kollo	txt		
debereg	txt	koureko	txt		
fandoub	txt	kouresu	txt		
gamonzo	txt	koyria	txt		
gardana	txt	malidji	txt		
gorougo	txt	massiko	txt		
guilahe	txt	niameya	txt		